
Makefiles

Make is a common tool used by programmers to automate tasks such as compiling code. Make is configured by writing down a
set of rules that specify how target files are to be built from lists of dependencies. The rules are stored inside a Makefile that lives
next to the program source code. This file is then processed by the make shell command. A basic Makefile provides two important
benefits: a productivity boost by eliminating the need to re-type complicated commands and protection from typos that can cause
critical files to be overwritten. As projects grow more complicated, Makefiles provide additional benefits by ensuring components
are assembled in the correct order and that no file is re-compiled unless the file has been modified more recently than a target that
depends on it.

A simple template for a Makefile has the following form:

All make commands are saved into a file named
Makefile that is saved next to the project
source code.
#
Makefile comments start with a hash sign: ‘#’
#
Variables may be assigned values for quick
reference later. Values are retireved from
variables by wrapping the variable
name inside ‘$()’.
LDFLAGS = < l i b r a r y search d i r e c t o r i e s go here>

The append operator ‘+=’ is shorthand for
VAR = $(VAR) <stuff to append >
LDFLAGS += < l i b r a r y names go here>
FCFLAGS = <g fo r t r an compi le r f l a g s go here>
FCFLAGS += <module search d i r e c t o r i e s go here>

A "make target" is a file , such as an executable
program. The shell commands required to build
the target follow in a _tab indented_ list.
<t a rge t name>: < l i s t of f i l e s or t a rge t names>

‘$@’ is shorthand for the target name
and ‘$ˆ’ is shorthand for the list of
dependencies.

Tab→ gfortran $(FCFLAGS) $ˆ -o $@ $(LDFLAGS)

Makefile Template

LDFLAGS =
LDFLAGS +=
FCFLAGS = -Wall -fbounds -check
FCFLAGS +=

pipe_flow: pipe_flow.f90

Tab→ gfortran $(FCFLAGS) $ˆ -o $@ $(LDFLAGS)

Simple Makefile

LDFLAGS =
LDFLAGS +=
FCFLAGS = -Wall -fbounds -check
FCFLAGS +=

pipe_flow: types.f90 integration_subs.f90 pipe_main.f90

Tab→ gfortran $(FCFLAGS) $ˆ -o $@ $(LDFLAGS)

Makefile with Multiple Source Files

LDFLAGS =
LDFLAGS +=
FCFLAGS = -Wall -fbounds -check
FCFLAGS +=

pipe_flow: pipe_main.f90 integration_subs.o types.o

Tab→ gfortran $(FCFLAGS) $ˆ -o $@ $(LDFLAGS)

integration_subs.o: integration_subs.f90 types.o
‘$<’ is shorthand for the first dependency
in the list. This is used instead of ‘$ˆ’
because only the ‘.f90 ’ file needs to
be compiled.

Tab→ gfortran $(FCFLAGS) -c $<

types.o: types.f90

Tab→ gfortran $(FCFLAGS) -c $<

Makefile with Module Targets

LDFLAGS = -L$(HOME)/lib
LDFLAGS += -lfintegrate
FCFLAGS = -Wall -fbounds -check
FCFLAGS += -J$(HOME)/ modules

pipe_flow: pipe_main.f90

Tab→ gfortran $(FCFLAGS) $ˆ -o $@ $(LDFLAGS)

Makefile with External Libraries

