SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4023

MINOS 5.5 USER'S GUIDE

by
Bruce A. Murtagh® and Michael A, Saunders

TECHNICAL REPORT 50L 83-20R

December 1983
Revised Jan 1987, Mar 1993, Feb 1995, Jul 1998

Copyright © 1983-1998 by Stanford University

*Graduate School of Management, Macquarie University, Sydney, NSW 2109, Australia.

Research and reproduction of this report were partially supporied by National Science
Foundation Grants DCR-8413211, ECS-8312142 and DDM-9204208: US Department of
Energy Contract DE-AA03-76SF000326 PA# DE-AS03-76ER72018 and Grant DE-FGO03-
92ER25117; Office of Naval Research Grants N00D14-85-K-0343 and N00014-90-J-1242; and
US Army Research Office Contract DAAG29-84-K-0156. .

Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the above sponsors.
Reproduction in whole or in part is permitted for any purposes of the United States Gov-
ernment. This document has been approved for public release and sale; its distribution is
unlimited.

PREFACE

Since the middle of 1980, approximately 150 academic and research institutions around the
world have installed MINOS/AUGMENTED, the predecessor of the present system. About 30
further installations exist in private industry. With enquirics continuing to arrive almost daily, the
need for a combined linear and nonlinear programming system is apparcnt in both environments.
To date, many users have been able to develop substantial nonlinear models and have come to
be fairly confident Lthat the Optimal Solution message actually means what it says. Certainly,
other lcss joyful exit messages wilt often have greeted eager cyes. These serve to emphasize that
model building remains an art, and that nonlinear programs can be arbitrarily difficuft to solve.
Nevertheless, the success rate has been high, and the positive response from users with diverse
applications has inspired us to pursue further development.

MINOS 5.0 is the result of prolonged refRncments to the same basic algorithms that were in
MINOS/AUGMENTED:

e the simplex method (Dantzig, 1951, 1963),

e a quasi-Newton method (very many authors from Davidon, 1959, onward),
e the reduced-gradient method (Wolfe, 1962}, and

e a projected Lagrangian method (Robinson, 1972;- Rosen and Kreuser, 1972).

From numerous potential options, it has been possible to develop these particular algorithms into
a relatively harmonious whaole. The resulting system permits the solution of both small and large
probleras in the four main areas of smooth optimization:

¢ linear programming,

s unconstrained optimization,

e linearly constrained optimization, and

o nonlinearly constrained optimisation,
In rare cases, the quasi-Newton method may require excessive storage. We have chosen not to
provide a nonlinear conjugate-gradient method, or a truncated linear conjugate-gradient method,
for this situation. Instead, we retain the quasi-Newton method throughout, restricting it to certain
subspaces where nccessary. (The strategy for altering the subspaces remains experimental.)

We regret that other obvious algorithms (such as integer programming, piece-wise smooth
optimization, the dual simplex method) are still not available. Nor are ranging procedures or
parametric algorithms. Sensitivity analysis is still confined to the usual interpretation of Lagrange
multipljers.

As before, MINOS 5.0 is a stand-alone system that is intended for use alongside commercial
mathematical programming systems whenever such facilities are available. The systems should
complement cach other.

To users of MINOS/AUGMENTED, the most apparent extensions are a scaling option (for
linear constraints and variables only), and the ability to estimate some or all gradients numerically,
if they are not computed by the usee. On a more mundanc level, the names of the user subroutines
for computing nonlinearities have been changed feom CALCFG and CALCON to FUNOBJ and FUNCON,
and two new paramcters allow access to the workspace used by MINOS.

Internally, one of the major improvements has been the development of a new basis-handling
package, which forms the foundation of LUSOL (Gill, ct al., 1986), a set of roulines for computing
and updating a sparse LU factorization. This package draws much from the work of Reid (19786,
1082). It replaces the P4-based procedures in MINOS/AUGMENTED (Saunders, 19768} and is

Preface

substantially more cfficient on problems whose basis matrices are not close to triangular. As
before, column updates are performed by the method of Bartels and Golub (1969, 1971), but the
implementation is more efficient and there is no severe degradation arising from {arge numbers
of “spikes”. We venture to say that LUSOL is the first truly stable basis package that has been
implemented for production use.

A Turther vital improvement has been the devclopment of two new linescarch procedures
(Gill, et al., 1979) for linding a step length with and without the aid of derivatives. In particular
they cater for function values that are somewhat “noisy” —a common practical circumstance.

From a soltwarc engineering viewpoint, the source code has been restructured to case the
problems of maintenance and future development. MINOS still stands for Modufar In-core
Nonlinear Optimization System, and we have done our best to respect the implications of the
“M". Nevertheless, MINOS 5.0 remains a parametcr-driven system. It is a speeding train on a
railroad that has parallel tracks and many switches but few closed circuits. Its various modules
cannot be called upon in an arbitrary order. In fact, there are 80 parameters that can be set if
necessary—these are the switching points along the railroad. Fortunately, only a handful need
be set for any particular application. In most cases, the default values are appropriate for large
and small problems alike. ’

For interactive users, a new feature is the SUMMARY file, which provides at the terminal
a brief commentary on the progress of a run. Unfortunately, a two-way conversation is not
possible. The only input engendered by this feature is an occasional dive for the Break key to
abort an errant run. While rarely called upon, such a facility can be crucial to the security of
one's computer funds,

Throughout the development of MINCS, we have received a great deal of assistance from
many kind people. Most especially, our thanks go to Philip Gill, Walter Murray and Margaret
Wright, whose knowledge and advice have made much of this work possible. They are largely
responsible for the lincsearch procedures noted abave (which are as vital to nonlinear optimization
as basis factors are to linear programming), and they are authorities on all of the algorithms
employed within MINOS. Their patience has been called upon continually as other important
work at SOL either languished or fell unfairly on their shouldera.

Further to basis factors, we acknowledge the pioncering work of John Reid in implementing
the Markowitz-based LU factorization and the Bartels-Golub update. The LUSOL procedures in
MINOS 5.0 owe much to the ingenuity embodied in his LAO5S package.

Users have naturally provided an essential guiding inAuence. In some cases they are algorithm

developers themselves. At home, we have had constant encouragement from George Dantzig and
the benefit of his modeling activity within SOL, notably on the energy-economic model PILOT.
We thank him warmly [or bringing the Systems Optimization Laboratory into existence. We also
thank Patrick McAllister, John Stone and Wesley Winkler lor the feedback they have provided by
running various versions of MINOS during their work on PILOT. {We note that PILOT has grown
to 1500 constraints and 4000 variables, and now has a quadratic objective. ['rom our perspcctive,
it is a nontrivial tcst problem!] Likewise, Alan Manne has provided encouragement and assistance
from the beginning. Two of his nonlinear economic models have been invaluable as test problems
(and are included on the MINOS distribution tape). We also thank him and Paul Preckel for the
development of procedures for solving sequences of related problems (Preckel, 1980). The main
ingredients of these procedures are now an intcgral part of MINOS.

From industry, we have reccived immense benelit from the working relationship between
SOI, and Robert Burchett of the General Electric Company (Electric Utility Systems Engineering
Department) in Schenectady, New York. Many aigorithmic and user-oriented details have resuited

i

Prefsce

from his experience and {rom his interest in the fine points of optimization. Three years ago we
did not envisage that problerns iavolving thousaads of nonlinear constraints would soon be ::lved
successfully. Rob constantly pushed test versions of MINGQOS to their limits, and inspired the
development of techniques to extend those limits. We thank him for his tireless contributions.
We are also grateful to Zenon Fortuna, Steven Gorclick, Marc Hellman, Thomas McCormick

Larey Nazareth, Scott Rogers, John Rowse and John Tomlin for their heipful suggestions and[o:-
assistance in teacking down bugs. Finally, we thank the staff of the Office of Technology Licensing
and the Information Technology Services at Stanford University for undertaking the task of
distributing MINOS.

Most of the soltware development was carsied out at the Stanford Linear Accelerator Center
with the aid of the Wylbur text editor and the University of Waterloo’s WATFIV compiler. This
User's Guide was typeset using TEX®, with editorial assistance lrom Philip Gill and Margaret

Wright.
Bruce Murtagh
{niversily of New South Wales

Michael Saunders
Stanford University

December, (983

Preface to MINOS 5.5

This manual is a revision of the 1983 MINOS 5.0 User’s Guide. The main changes implemented in
MINOS 5.5 are summarized in the Appendices. A significant change is that MINOS ig now callable

as a subroutine.
Certain parts of this Guide are no longer relevant, but Chapter 7, for example, still conveys the

main implementation philosophy. For exact details, please see miminos.doc in the distribution
files. '

MINOS is licensed by Stanford University. Fortran 77 source code for all common machines
{mainframes, workstations and PCs) is available from SBSI:

Stanford Business Software, Inc. sales@SBSI-SOL-Optimize.com
2672 Bayshore Parkway, Suite 304 (650) 962-8719

Mountain View, CA 94043 (650) 962-1869 Fax

Contact: Ms Radhika Thapa Manager, Software Distribution

SBSI handles individual and site licenses, both non-psofit and commercial. It should be noted
that SBSI is separate and independent from Stanford University.

“D. £. Knuth, TEX and METAFONT, New Dircctions in Typeseiiing, Aneritan satheraatical Society aad Digital
Press, Bedford, Massachusetts (1979). .
it

iv

Special commercial licenses, such as those involving the re-sale of MINOS as part of a larger
package, are negotiated by

Hans Wiesendanger Hans@®OTLmail stanford.edu

Office of Technology Licensing http://www.stanford.edu/group/OTL/
Staanford University (650) 723-0651

900 Weich Road, Suite 350 (650) 725-7295 Fax

Palo Alto, CA 94304-1850
For many applications involving linear and nonlinear models, we recommend the use of algebraic
:nodeling languages. Two of the most widely used systems are GAMS and AMPL. They provide a
convenient interface to MINOS and to several other linear, integer and nonlinear programming sys-
tems (notably CPLEX, OSL and CONOPT). Implementations are available for PCs, workstations
and mainframes.

GAMS Development Corporation http://www.gams.com/

1217 Potomac Street NW sales@gams.com
Washington, DC 20007 (202) 342-0180
AMPL development http://www.ampl.com/

info@ampl.com

AMPL sales and AMPL Plus http://www.modeling.com
info@modeling.com

CONTENTS
1. INTRODUCTION s e s s, 1
Lt Linear Programming, 1
1.2 Nonlinear Objective 2
1.3 Nonlinear Constraints v e e e 3
1.4 Problem Formulation 5
15 Restrictions & . . L e e e e e e e e e 5
L - 6
L7InputDataFlow 0 o o o L s e e e e e e e e e e 7
1.8 Muitiple SPECS Files 0 . ¢« i v s e e e e e e e e e 8
1.9 Internal Modifications e e e e e e e e e e e e e e e e e e 8
2. USER-WRITTEN SUBROUTINES i i i e e e e e e i 9
2.1 Subroutine FUNOBJ & « v v v e e v e v v C e e e e e e e g
2.2 Subroutine FUNCON o e e e e e e e e e e e e e 11
2.3 Constant Jacobian Elements 4 vt e e e e e e 12
2.4 Subroutine MATMOD i i e e e e e e e e e e e e s 18
2.5 Subroutine MATCOL e e e e e e e e e e e e e e e 15
2.8 Matrix Data Strueture 0 . . e e .. e e e e e e e e 15
3. THESPECSFILE Ve e e e e e e s P e e e e e e e e e e e e 17
JLISPECSFileFormat & . i i v e e e e e e e e e e e e e 17
3.2 SPECS File Checklist and Defaults 18
3.3 SPECS File Definitions, . . e 21
4. THEMPSFILE. e e e e e e e e s e b e e e e e e e e 41
41 The NAME Card & ¢ v v v s v s v v o b e e e e e e e e e e 41
42 The ROWS Section+ . v . . . Ve e e e e e e e e e e 42
4.3 The COLUMNS Section & v v v v vt et e e e e s e e e e e e e e s 43
44 The RHS Section v v v v v v v v « e e e e e e .. .45
4.5 The RANGES Section e e e e ot e e e e e e e e 45
4.6 The BOUNDS Section 0 0 v v i v v vttt e 48
4.7 Comment Carde . . . & . L L L . s e 48
4.8 Restrictions and Extensions in MP’S Format & v & v v v v v e e e 48
5. BASISFILES e e e e e et e e e e e e e e e e e e e e e e e e 49
50 0LD and NEW BASIS Files & v v ¢ v v v s b e e e e e e e e e v s 49
5.2 PUNCH and INSERT Files e e e e e e e e e e e e e 52
5.3 DUMP and LOAD Files Ve e e e e e e e e 53
5.4 Restarting Modified Problems e e e e e e e e e e 55
8. QUTPUT ot e e a e e e e e e e e e e e v e v . . BT
6.1 Iteration Log Ve 57
6.2 Basis Factorization Statisties ¢ . . v v i i et . 81
6.3 EXIT Conditions e e e e e e e e e e e e .. .83
8.4 Solution Output L. . e e e e e e e e e e e e e e 70
65SOLUTIONFile v v v v v v .. Cr et e e e e e e e e 72
6.8 SUMMARY File . . . & . . ¢ i v i s it et e e e e e e e e e e e e e e e 73
L

Contents

7. SYSTEM INFORMATION
7.1 Distribution Tape
7.2 Source Files

............................... 78
7.4 Machine-dependent Subroutines, .., ... 79
7.5 Subroutine Structureo L L 82
7.6 Test Problems C e e e e e e e e e e e e e e e e 83
8. EXAMPLES e e e 85
8.1 Linear Programming, ... e 88
8.2 Unconstrained Optimization, 88
8.3 Linearly Constrained Optimiszation 20
8.4 Nonlinearly Constrained Optimization, . .. e e e e R 1
8.5 Use of Subroutine MATMOD + « .+ .. e e e e e . 109
8.6 ThingstoRemember e e e e 112
REFERENCES e e st h e e e e e s . . 113
INDEX e e e e e e e e e e e s e e 115

APPENDIX A. MINOS 5.5

APPENDIX B. Subroutine minoss

1.1 Linear Programming 1

1. INTRODUCTION

MINOS is a Fortran-based computer system designed to solve large-scale optimization problems
cxpressed tn the [ollowing standard form:

minimize F{z) +¢Tz + dTy (1)

¥
subject to f(z) + A1y = by, 2
Az 4+ Ay = be, (3)

< ()5 “

where the vectors ¢, d, &1, ba, {, v and the matrices A;, Az, A3 are constant, F(z) is a smooth
scalar function, and f(z) is a vector of smooth functions { fi(z)}. Ideally the first derivatives
(gradients) of ¥(z) and {*(z) should be known and coded by the user. (If only some gradients are
known, MINOS will estimate the missing ones using finite differences.)

The ny components of z are called the nenlinear variables, and the ng components of y are
the linear variables. Similarly, the m, equations (2) are called the nonlinear constraints, and the
mq equations (3) are the linear constraints. Equations (2) and (3) together are called the general
constraints. We define m = my + msg and n = n + N3,

The constraints (4) specify upper and lower bounds on all variables. These are fundamental
to many problem formulations and are treated specially by the solution algorithme in MINOS.
Some of the components of { and 4 may be —oo or +oo if desired.

Similar bounds may be defined for the general constraints (2), (3). These constraints may
therefore be thought of as taking the form

I < flz)+ A1y € uy,

lg € Az + Ay € v,

though for historical reasons the bounds are specified. in terms of a right-hand side b; and a range
u; — .

In the following sections we introduce some of the terminology required, and give an overview
of the algorithms used in MINOS and the main system features.

1.1 Linear Programming

If the functions F{z) and f{z) are absent, the problem becomes a linear program. Since there is
no need to distinguish between linear and nonlinear variables, we prefer to use z rather than y.
It is also convenient computationally to convert all general constraints into equalities, with the
only inequalities being simple bounds on the variables. Thus, we will write linear programs in
the form
z
minimize ¢Tz subject to Az + Is= 0, i < () < 4,

z,8 8
where the elements of z are called structural variables (or column variables) and ¢ is a set of slack
variables (called logical variables by some authors). The bounds { and u are suitably redefined.

MINOS solves linear programs using a reliable implementation of the primal simplex method
(Dantzig, 1963). The simplex method partitions the constraints Az + /s = 0 into the form

Bzy + Nz, =0,

where the basis matrix D is square and nonsingular. The elements of z, and z, are called the
basic and nonbasic variables respectively; they are a permutation of the elements of z and s.
At any given stage, each nonbasic variable is equal to its upper or lower bound, and the basic
variables take on whatever values are needed to satisfy the gencral constraints. (Clearly they
may be computed by solving the linear equation Bz = —Nzy.) It can be shown that if an
optimal solution to a linear program exists, then it has this form. The simplex method reaches
such a solution by performing a sequence of iterations, in which one column of B is replaced by
one column of N (and vice versa), until no such interchange can be found that will reduce the
value of ¢Tz.

If the components of z; do not satisfy their upper and lower bounds, we say that the current
point is infeasible. In this case, the simplex method first aims to reduce the sum of infeasibilities
to zero.

MINOS maintains a sparse LU factorization of the basis matrix B, using a Markowitz
ordering scheme and Bartels-Golub updates, as implemented in the LUSOL package of Gill,
Murray, Saunders and Wright {1986). (For a description of the concepts involved, see Reid, 1978,
1982.) The basis factorization is central to the efficient handling of sparse linear and nonlinear
constraints.

1.2 Nonlinear Objective

When nonlinearities are confined to the term F(z) in the objective function, the problem is a
linearly constrained nonlinear program. MINOS solves such problems using a reduced-gradient
algorithm (Wolfe, 1962) in conjunction with a quasi-Newton algorithm (Davidon, 1959). The
implementation follows that described in Murtagh and Saunders {(1978).

In this case, the constraints Az + s = 0 are partitioned into the form

Bz.+32,+Nzu=oa

where z, is a set of superbasic variables. At a solution, the basic and superbasic variables will
lie somewhere between their bounds, while the nonbasic variables will again be equal to one of
their bounds. In broad terms, the number of superbasic variables (the number of columns in §)
is a measure of how nonlinesar the problem is. Let this number be s. (The context will always
distinguish s from the vector of slack variables.) In many practical cases we have found that s
remains reasonably small, say 200 or less, regardless of the size of the problem.

In the reduced-gradient algorithm, z, is regarded as a set of independent variables that are
free to move in any desirable direction, namely one that will improve the value of the objective
function (or reduce the sum of infeasibilities). The basic variables can then be adjusted in order
to continue satisfying the linear constraints.

If it appears that no improvement can be made with the current definition of B S and N,
some of the nonbasic variables are selected to be added to S, and the process is repeated with an
increased value of . At all stages, if a basic or superbasic variable encounters one of its bounds,
that variable is made nonbasic and the value of s is reduced by one.

Users familiar with linear programs may interpret the simplex method as being exactly the
above process, with s oscillating between 0 and 1. (Later, one step of the simplex method or the
reduced-gradient method will be called a minor iteration.)

1.3 Nonlinear Conatrainta 3

A certain operator Z will frequently be useful for descriptive purposes. In the reduced-

gradient algorithm it takes the form
-B-1g
Z = I)
0

though it is never computed explicitly. Since it has full column rank and satisfies (B § N)Z =0,
we say that Z spans the null space of the constraint matrix (A). Given an LU factorization
of the basis matrix B, Z allows us to work within a region defined by the linear constraints.

An important part of MINOS is a stable implementation of the quasi-Newton algorithm
for optimizing the superbasic variables. This can achieve superlinear convergence within each
relevant subspace (defined by the current B, S and N). It obtains a search direction p, for the
superbasic variables by solving a system of the form

RTRP: = —Zrﬂ’

where g is the gradient of F(z), Z7g is the reduced gradient, and R is a dense upper triangular
matrix that is updated in various ways in order to approximate the reduced Hessian according to
RTR =5 ZTH Z, where H is the matrix of second derivatives of F(z) (i.e., the Hessian).

Once p, is available, the search direction for all variables is defined by p = Zp,. A line
search is then performed to find an approximate solution to the one-dimensional problem

minimize F(z + ap) subjectto 0 < a < amex
-

where amax is determined by the bounds on the variables. Another important part of MINOS is
the step-length procedure used in the line search to determine the step-length a. Two different
procedures are used, depending on whether all gradients are known. (See Gill, Murray, Saunders
and Wright, 1979.) Interested users can influence the amount of work involved by setting a
parameter called the LINESEARCH TOLERANCE.

Normally, the objective function F(z) will never be evaluated at a point z unless that point
satisfies the linear constraints and the bounds on the variables. An exception is during a finite-
difference check on the calculation of gradient elements. This check is performed at the starting
point o (which may be specified by the user). MINOS ensures that the bounds on the variabies
are satisfied, but in general the starting point will not satisfy the general linear constraints. [f
F(zo) is undefined, the gradient check shouid be suppressed, or zo should be re-specified.

For details of the matters mentioned here and many other essential aspects of numerical
optimization, see Gill, Murray and Wright (1981).

1.3 Nonlinear Constraints

When the problem contains nonlinear constraints, MINOS uses a projected augmented Lagrangian
algorithm, based on a method due to Robinson (1972); see Murtagh and Saunders (1982). MINQS
treats linear constraints and bounds specially, but the nonlinear constraints may not be satisfied
until an optimal point is reached. Thus, f(z) and its gradients (the Jacobian matrix J(z) =
[0f'(z)/8=z;]) may need to be defined outside the region of interest.

In fact, the constraint functions will almost never be evaluated unless the linear constraints are
satisfied. Again, the starting point is an exception; it will satisfy its bounds, but f(z) and /(r)
will be evaluated at zo regardless of the general linear and nonlinear constraints. This matter
must be borne in mind during the formulation of a nonlinear program.

The nature of the solution process can be summarized as follows. A sequence of major
iterations is performed, each one requiring the solution of a linearly constrained subproblem.
The subproblems contain the original linear constraints and bounds, as well as linearized versions
of the nonlinear constraints. This just means that f(z) in equation (2) is replaced by Lf, its
linear approximation at the current point. We shall write this approximation as

f(z, 2} = faa) + ez — 24y
or more briefly .
f =+ Jilz ~ z2), {5)

where zj is the estimate of the nonlinear variables at the start of the k-th major iteration, The
subproblem to be solved takes the form

min;lr;xi:e F(z) + cTz + dTy — 2 (f - n+ ‘;‘P(f -HTu-h (6)
subject to f+ Ay =by, (7)
Agz + Ay = bg, (8)

1< (:) < u. ()

The objective function (8) is called an sugmented Lagrangian. The vector \, is an estimate of A,
the Lagrange multipliers for the nonlinear constraints. The scalar p is a penalty parameter, and
the term involving g is a modified quadratic penality function.

Using (5) we see that the linear constraints (7) and (8) take the form

(06 A6)=07) o

MINOS uses the reduced-gradient algorithm to minimize {6) subject to (10), with the original
bounds on z and y, and suitable bounds on the slack variables 8, and sz. The Jacobian Jj is
treated as a sparse matrix, the same as the mattices A;.

Unfortunately, there is no guarantee that the algorithm just described will converge from
an arbitrary starting point. The concerned user can influence the likelihood of convergence in
several ways: ‘

1. By specifying zo as carefully as possible.
2. By including sensible upper and lower bounds on all variables.
3. By specifying a PENALTY PARAMETER p that is higher than the default value, if the problem
is suspected of being highly nonlinear.
4. By specilying a DAMPING PARAMETER that is lower than the default value, again if the problem
is highly nonlinear.
In rare cases jt may be safe to use Ay == 0 and p = 0 for all subproblems, by specifying LAGRANGIAN
= NO. However, convergence is much more likely with the default setting, LAGRANGIAN = YES. The
initial estimate of the Lagrange multipliers is then Ay = 0, but for later subproblems, X is taken
to be the Lagrange multipliers associated with the (linearized) nonlinear constraints at the end
of the previous major iteration.

The penalty parameter is initially 100.0/m, by default, and it is reduced in stages for later
subproblems when it appcars that the sequence {zx, \&} i8 converging. In many cases it is safe
to specify p = O from the beginning, particularly if the problem is only mildly nonlinear. This
may improve the overall efficiency.

1.5 Restrictions 5

1.4 Problem Formulation

In general, it is worthwhile expending considerable prior analysis to make the consiraints com-
pletely linear if at all possible. Sometimes a simple transformation will suffice. For example, a
pipeline optimization problem has pressure drop constraints of the form

K, K, 2 2
FTRIT + pTEIT +:- S Pr-Py

where d; are the design variables {pipe diameters) and the other terms are constant. These
constraints are highly noniinear, but by re-defining the decision variables to be z; = 1/d$814 we
can make the constraints linear. Even if the objective function becomes more nonlinear by such
a transformation (and this usually happens), the advantages of having linear constraints greatly
outweigh this.

Similarly, it is important not to move nonlinearities from the objective function into the
constraints. Thus, we would not replace minimize F(z) by

minimize z subjectto F(z)—-z=0.

Scaling is a very important matter during problem formulation. A general rule is to scale
both the data and the variables to be as close to 1.0 as possible. In general we suggest the
range 1.0 to 10.0. When conflicts arise, one should sacrifice the objective function in favor of the
constraints. Real-world problems tend to have a natural scaling within each constraint, as long
as the variables are expressed in consistent physical units. Henee it is often sufficient to apply
a scale factor to each row. MINOS has an option to seale constraints and variables
automatically.

Finally, upper and lower bounds on the variables (and on the constraints) are extremely
useful for confining the region over which optimization has to be performed. If sensible values
are known, they should always be used. They are also important for avoiding singularities in the
problem functions. For salety when such singularities exist, the initial point z¢ discussed above
should lie within the bounds.

1.5 Restrictions

MINOS is designed to find solutions that are locally optimal. The nonlinear functions in a problem
must be smooth (i.e., their first derivatives must exist). The functions need not be separable.
Iateger restrictiona cannot be imposed directly.

A certain region is defined by the linear constraints in a problem and by the bounds on the
variables. If the nonlinear objective and constraint functions are convex within this region, any
optimal solution obtained will be a global optimum. Otherwise there may be several local optima,
and some of these may not be global. In such cases the chances of finding a global optimum are
usually increased by choosing a starting point that is “sufficiently close”, but there is no general
procedure for determining what “close” means, or for verilying that a given local optimum is
indeed global.

MINOS uses one large array of main storage for most of its workspace. The length of this
array may need to be adjusted to suit a particular problem, but otherwise the implementation
places no fixed limitation on the size of a problem or on its shape (many constraints and relatively

few variables, or vice versa). In general, the limiting factor will be the amount of main storage

available on a particular machine, and the amount of computation time that one's budget can
stand,

procedure is likely to be efficient, An important quantity is m = m, + mgz, the total number
of general constraints in (2) and (3). We note that m < 100 is considered “small”, m = 1000
or 2000 is “medium”, and m 2 5000 would be “large”. On machines that use 16-bit integers
(INTEGER*2 on [BM and DEC VAX systems), the normal implementation of MINOS requires that
m < 32767.

The amount of workspace required by MINOS is roughly 100m words, where one “word” is
the relevant storage unit for the floating-point arithmetic being used (REAL*8 on IBM and DEC
VAX, REAL on Burroughs and moest CDC machines). On IBM and VAX systems, this means about
800m bytes for workspace. A further 300K bytes, approximately, are needed for the program
itsell, along with buffer space for several files.

Another important quantity is n = 7y + ng, the total number of variables in z and y. For
nonlinear problems, if m; and ny are small compared to m and n, the total storage required
should not be much greater than just described. If n, is “large” (say n; > 200), the amount of
storage required may or may not be substantial, depending on whether F(z) or f(z) are highly
nonlinear or not,

In this context, the efficiency of MINOS depends on 8, the number of superbasic variables.
Recall that m + s variables lie between theie upper and lower bounds, where s is zero for purely
linear problems. We know that s need never be larger than n, + 1. In practice, s is often very
much less than this upper limit. -

In the quasi-Newton algorithm, the dense triangular matrix R has dimension » and requires
about }s? words of storage. If it seems likely that s will be very large, some aggregation or
reformulation of the problem should be considered.

1.8 Files

MINOS operates primiarily within central memory, and is well suited to a virtual storage environ-
ment. Certain disk files are accessed as follows.

Input file Status Record Length (characters)
READ gile see below

SPECS file required 80

MPS file required 81

BASIS files optional 80

QOutput file Status Record Length (characters)
PRINT file required 129
SUMMARY file optional 80

BASIS files optional 80
SOLUTION file optional 111

Fixed-length, blocked records may be used in all cases, and the files are always accessed sequen-
tially. The logical record length must be at least that shown. For efficiency, the physicgl' block
size shoulfi be several hundred characters in most cases, ’ o '

1.7 Input Data Flow 7
Unit numbers for the READ, SPECS, PRINT files are defined at compile
time; typicaily they will be 5, 5, 8 , but they may depend on the installation. The remaining

unit numbers are specified at run time in the SPECS file.

Unit numbers for the READ, PRINT and SUMMARY files are stored in the following COMMON
block:

COMMON /MIFILE/ IREAD,IPRINT, ISUMM
It may be convenient to reference these in the user subroutines FUNOBJ, FUNCON and MATMOD.

System Note: The READ file is not used explicitly by MINOS, but its unit aumber is used
to test if a file should be rewound. (Thus, input files are subject to a Fortran REWIND as long as
they are not the same as the READ file.) The PRINT file is used frequently. Other output files
are rewound if they are not the same as the PRINT file.

1.7 Input Data Flow

Some or all of the following items are supplied by the user:

s Subroutine FUNOBJ

¢ Subroutine FUNCON
» Subivuline MATHOD

¢ A SPECS file

¢ An MPS file

e A BASIS file

¢ Data read by FUNCON on its first entry
e Data read by FUNOBJ on its first entry
o Data read by FUNCON on its last entry
e Data read by FUNOBJ on its last entry

The order of the files and data is important if all are stored in the same input stream.

Subroutines FUNOBJ and FUNCON define the nonlinear objective and constraint functions
respectively (if any); they are not needed il the functions are purely linear and are defined in
the MPS file. '

Subroutine MATMOD is occasionally needed, for applications involving a sequence of closely
related problems.

The SPECS file defines various run-time parameters {ITERATION LIMIT, SAVE FREQUENCY,
etc.). Its file number is defined at compile time. It will normally be the first data set in the
system card input stream.

The MPS file specifies names for the constraints and variables, and defines all the linear
constraints and bounds. It may follow the SPECS file in the card input stream, but will often
reside in a file of its own (as specified in the SPECS file). The data format is similar to that
used in commercial mathematical programming systems (hence the name). The format has been
generalized slightly for nonlinear problems.

If desired, a BASIS file may be loaded at the beginning of a run. This will normaily have

-been saved at Lhe end of an earlier run. Three kinds of basis file are available; they are used to

restart the solution of a problem that was interrupted, or to provide a good starting point for
some slightly modified problem.

1.8 Multiple SPECS Files

Onec or mote problems may be proccssed during a run. The parameters for a particular problem
arc delimited by BEGIN and END in the SPECS file. While scanning for the keyword BEGIN,
MINOS recognizes the keywords SKIP and ENDRUN. Thus in the following example:

BEGIN CASE 1

END CASE 1
SKIP CASE 2

END CASE 2
BEGIN CASE 3

END CASE 3
ENDRUN
BEGIN CASE 4

END CASE 4
only the first and third problem will be processed.

1.9 Internal Modifications

A sequence of closely related problems may be specified within a single SPECS file, via the CYCLE
parameter; for example,

BEGIN CYCLING EXAMPLE
CYCLE LIMIT 10

END EXAMPLE
indicates that up to 10 problems are to be processed. This is intended for cases where the solution
of one problem Py is needed to define the next problem Piy,.

The actual method for defining the next problem in a cycle depends on the application.
Sometimes it can be done by changing the output from the lunction subroutines FUNOBJ and/or
FUNCON. Alternatively, the user may provide a third subroutine MATMOD to perform some modifi-
cations to the problem data. MATMOD is called by MINOS at the beginning of every cycle.

If necessary, the number of linear variables can be increased when a problem Py, is defined.
We think of this as adding new columns to P,. The new columns are not included in the MPS file,
and their sparsity pattern need not be known until P has been solved. Instead, an appropriate
number of PHANTOM COLUKNS and PHANTOM ELEMENTS are defined in the SPECS file (to reserve
a pool of storage), and the user's subroutine MATUOD generates each new column by calling the
MINOS subroutine MATCOL.

2.1 Subroutine FUNORBJ 9

2. USER-WRITTEN SUBROUTINES

To solve a purely linear problem, only a SPECS fle and an MPS file (and possibly a BASIS file)
need be supplied.

For nonlinear problems, one must also provide some appropriate Fortran code. Nonlinearities
in the objective function are defined by subroutine FUNOBJ. Those in the constraints are defined
separately by subroutine FUNCON. On every entry except perhaps the last, these subroutines must
return appropriate function values F. Wherever possible, they should also return all gradient
components in the array G. This provides maximum reliability and corresponds to the default
setting, DERIVATIVE LEVEL = 3.

In practice it is often convenient not to code gradients. MINOS is able to estimate gradients
by finite differences, by making a call to FUNGBJ or FUNCON for each variable t; whose partial
derivatives need to be estimated. However, this reduces the reliability of the optimization
algorithms, and it can be very expensive if there are many such variables z;.

As a compromise, MINOS sallows you to code as many gradients as you like. This option is
implemented as follows: just before a function routine is called, each element of the gradient array
G is initialized to a specific value. On exit, any element retaining that value must be estimated
by finite differences.

Some rules of thumb follow:

L. For maximum simplicity and reliability, compute F and all components of G.

2. If not all gradients are known, compute as many of them as you can. (It often happens that
some of them are constant or even zero.)

3. If some gradients are known (but not all), it may be convenient to compute them each time
the function routines are called, even though they will be ignored if MODE = 0.

4. If the known gra.‘&ienta are expensive to compute, use the parameter KODE to avoid computing
them on certain entries.

3. While the function routines are being developed, use the VERIFY parameter to check the
computation of any gradient elements that are supposedly known.

2.1 Subroutine FUNOBJ

This subroutine is provided by the user to calculate the objective function F(z) and as much of
its gradient g(z) as possible. (It is not necded if the objective function is entirely lincar.)

Specification:
SUBROUTINE FUNOBJ(MODE. N, X. F., G, NSTATE. NPROB, Z, NWCORE)
IMPLICIT REAL»*8(A-H, 0-2)
DIMENSION X(N), G(N), Z(NWCORE)

{The IMPLICIT statement should not be used on machines for which single-precision floating-
point is adequate; e.g., Burroughs and CDC.)

2. llecor woritton Subroutinca

Parameters:

MODE

X(+)

G(x)

NSTATE

NPROB

Z(*)

(Input) This parameter can be ignored if DERIVATIVE LEVEL = 1 or 3 {i.e,, if all ele-
ments ol G are computed). In this case, MOCE will always have the value 2.

Otherwise, you must specily DERIVATIVE LEVEL = 0 or 2in the SPECS file to indicate
Vhat FUNDBJ will not compute all of . MINOS will then call FUNOBJ sometimes with
MODE = 2 and sometimes with MODE = 0. You may test MODE to decide what to do:

If MODE = 2, compute F and as many components of G as possible.

1f MODE = O, compute F but set G only if you wish. {On return, the contents of G will
be ignored.)

(Output) If for some reason you wish to terminate solution of the current problem, set
MODE (o a negative value, e.g., —1.

(Input) The number of variables involved in F(z). These must be the first ¥ variables
in the problem.

(Input) An array of dimension N containing the current values of the nonlinear variables
z.

(Output) The computed value of the objective function F(z).

(Output) The computed gradient vector g(z). In geaeral, G(j) should be set to the
partial derivative 8F [0z; for as many j as possible (except perhaps if MODE = {)—see
above).

(Input) If NSTATE = 0, there is nothing special about the current call to FUNOBJ.

(f NSTATE = 1, MINOS is calling your subroutine for the first time. Some data may nced
to be input or computed and saved in local or COMMON storage. Note that if there are
nonlinear constraints, the first call to FUNCON will oceur before the first call to FUNOBJ.

If NSTATE > 2, MINOS is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution. (If CYCLE LIMIT is
specified, this call occurs at the end of each cycle.) Note again that if there are nonlinear
constraints, the last call to FUNCON will occur before the last call to FUNOBJ.

In general, the last call is made with NSTATE = 2 + IERR, wherc IERR indicates the
status of the final solution. In particular, if NSTATE = 2, the current X is optimal; if
NSTATE == 3, the problem appears to be infeasible; if NSTATE = 4, the problem appears
to be unbounded; and if NSTATE = 5, the iterations limit was reached. In some cases,
the solution may be nearly optimal if NSTATE = 11; this value occurs if the linesearch
procedure was unable to find an improved point.

1f the nonlinear functions are expensive to evaluate, it may be desirable to do nothing
on the last call, by including a statement of the form IF (NSTATE .GE. 2) RETURN
at the start of the subroutine.

(lnput) An integer that can be set by a card of the form PROBLEM NUMBER n in the
SPECS file.

(Input) The primary work array used by MINOS. In certain applications it may be
desirable to access parts of this array, using various COMMON blocks to pinpoint the
required locations. (For example, the dual variables are stored in Z(LPI) onward, where
LPT is the first integer in the COMMON block MSLOC.) Otherwise, 2 and NWCORE can be
ignored.

NWCORE (Input) The dimension of Z.

2.2 FUNCON i

2.2 Subroutine FUNCON

This subroutine is provided by the user to compute the nonlinear constraint functions f(z} and
as many of their gradients as possible. (It is not nceded if the constraints are entirely linear.)
Note that the gradients of the vector f{z) define the Jacobian matrix J{z). The j-th column of
J(z) is the vector 9f/9z;.

FUNCON may be coded in two different ways, depending on the method used for storing the
Jacobian, as specified in the SPECS file.

| JACOBIAN = DENSE |

Specification:

SUBROUTINE FUNCON(MODE, M, N, NJAC, X, F, G, NSTATE, NPROB, Z, NWCORE)

IMPLICIT REAL+8 (A-H,0-2)
DIMENSION X(N), F(M), G(M,N), Z{NWCORE)
Parameters:
MODE (Input) This parameter can be ignored if DERIVATIVE LEVEL = 2 or-3 (i.e,, if all ele-

NJAC
X(*)

F (%)
G{(*,*)

ments of G are computed). In this case, MODE will always have the value 2.

Otherwise, you must specify DERIVATIVE LEVEL = O or 1 in the SPECS file to indicate
that FUNCON will not compute ail of G. You may then test MODE to decide what to do:

If MODE == 2, compute F and as many components of G as p;)ssible.

If MODE = 0, compute F but set G only if you wish. (On return, the contents of ¢ will
be ignored.)

(Output) If for some reason you wish to terminate solution of the current problem, set
MODE to a negative value, e.g., —1.

(Input) The number of nonlinear constraints {not counting the objective function). -
These must be the first M constraints in the problem.

(Input) The number of variables involved in f(z). These must be the first N variables
in the problem.

(Input) The value U=*N,

(Tnput) An array of dimension N containing the current values of the nonlinear variables
xz.

(Output) The computed values of the functions in the constraint vector f(z).

(Output) The computed Jacobian matrix J(z). The j-th column of J(z) should be
stored in the j-th column of the 2-dimensional array G (except perhaps il XODE = 0—
sec above). Equivalently, the gradient of the i-th constraint should be stored in the i-th
row of G. :

The other parameters are the same as for subroutine FUNOBJ.

12 2. User-written Subroutines

| JACOBIAN = SPARSE|

Specification:

SUBROUTINE FUNCON({ MODE, M, N, NJAC, X, F, G, NSTATE, NPROB, Z, NWCORE)
IMPLICIT REAL+8(A-H,0-2)
DIMENSION X(N), F(M), G(NJAC), Z(NWCORE)

This is the same as for JACOBIAN = DENSE, except for the declaration of G(NJAC).

Parameters:

NJAC (Input) The number of nonzero elements in the Jacobian matrix J(z). This is exactly
the number of entries in the MPS file that referred to nonlinear rows and nonlincar
Jacobian columns (the first ¥ rows in the ROWS section and the first N columns in the
COLUMNS section).

Usually NJAC will be less than WsN. The actual value of KIJAC may not be of any use
when coding FUNCON, but in all cases, any expression involving G({) should have the
subscript | between 1 and NJAC.

G(*) (Output) The computed elements of the Jacobian matrix (except perhaps if MODE = 0—
see previous page). These elementa must be stored into G in exactly the same positions
as implied by the MPS file. There is no internal check for consistency (except indirectly
via the VERIFY parameter), so great care is essential.

The other parameters are the same as for JACOBIAN = DENSE.

2.3 Constant Jacobian Elements

It all constraint gradients {Jacobian elements) are known {DERIVATIVE LEVEL = 2 or 3), any
constant elements may be specified in the MPS file if desired. An element of G that is not
computed in FUNCON will retain the value implied by the MPS file. (The value is taken to be zero
il not given explicitly in the MPS file.}

This feature is useful when JACOBIAN = DENSE and many Jacobian clements are identieally
zero. Such clements need not be specified in the MDP'S f(ile, nor set in FUNCON.

Note that constant nonzero elements do affect F. Thus, if J;; is defined in the MPS file and
is constant, the array element G(f,5) need not be set in FUNCON, but the value G (1,) *X(5) must
be added to F(s).

When JACOBIAN = SPARSE, constant Jacobian clements will normally not be listed in the
MPS file unless they are nonzero. If the cocrect vatue is entered in the MPS file, the corresponding
element G ({) need not be reassigned, but a term of the form G (!} #X(7) must be added to one of
the elements of F. (This featurc allows a matrix generator to output constant data to the MPS
file; FUNCON does not need to know that data ab compile time, but can use it at run time to
compute the clements of F.)

Remember, if DERIVATIVE LEVEL < 2, unassigned elements of G are not treated as constant;
they are estimated by finite differences, at significant expense.

2.4 Subroutine matmod 13

2.4 SUBROUTINE MATMOD

For stand-alone MINOS, matmod allows you to define a sequence of related problems and
have them solved one by one. It is used in conjunction with the Cycle and Phantom options.
If the Cycle limit = 1 (the default), matmod is never called. If Cycla limit > 1, matmod
is called before the original problem is solved (cycle 0), and also after each problem is solved
(cycle 1,2,3,...).

Within matmod you might alter some bounds on the variables or revise some of the
constraint coefficients. You may also communicate with subroutines funobj and funcen to
alter their behavior (e.g., by setting variables in your own common blocks). Finally, matmod
may specify whether a Cold, Warm or Hot start should be used when MINOS starts solving

the new problem.

Specification:

subroutine matmod(ncycle, nprob, finish,

$ m, n, nb, ne, nka, ns, nscl, nname,
$ a, ha, ka, bl, bu,
$ ascale, hs, namel, name2,
$ x, pi, rc, z, nweore)
implicit double precision (a-h,0-z)
integer ncycle, nprob,
$ m, n, nb, ne, nka, ns, nscl, nname, nwcore
logical finish
integer*4 ha(ne), hs(nb)
integer - ka(nka), namei(nname), name2(nname)
double precision a(ne), ascale(nscl), bl(mb), bu(mb),
$ x(nb), pi(m), rc(nb), z(nwcore)
On entry:
ncycle says how many problems have been solved.
If ncycle = 0, matmod is being called for the first time. MINOS has read the
MPS file, but the problem has not yet been scaled or solved. If a BASIS file
was specified, it has been read and hs is defined. Otherwise, Crash has not yet
been called and hs does not define a basis.
This entry allows matmod to initialize problem-dependent guantities. To do
nothing before the first problem is solved, put “if (ncycle .eq. 0) return”
at the beginning of matmod.
nprob is the Problem number specified in the SPECS file.
finish is .false.

m, n, nb, ne are the problem dimensions m, n, nb = n + m, ne (see Appendix B).

14

Chapter 2. User-written subroutines

nka
ns

nscl

is 7 + 1 (used to dimension ka).
is the number of superbasic variables.

says if the problems are being scaled prior to each solve. If nscl = 1, scaling has
not been specified. Otherwise, nscl = nb and ascale contains the scales used
for the problem just finished (assuming ncycle > 0). However, the problem
itself has been unscaled.

is normally the same as nb, assuming MINOS read an MPS file. If matmod is
for some reason being used with minoss, nname is the same as the minoss
parameter: it may be nb or 1, depending on whether names exist.

a(#), ha(*), ka(*) contain the constraint matrix (see Appendix B).

b1(*), bu(*) are the lower and upper bounds on all column and slack variables (z, s).

ascale(*)

hs(*)

contains scale factors for columns and rows (if ncycle > 0 and nscl > 1).

is the state vector for all variables.. See Appendix B.

namel(*), name2(*) contain the first and second halves of the names of the columns and

x(*x)
pi(*)

re(*)

z(nwcore)

On exit:

rows in a4 format. For example, if the 9th variable were named ‘Capital ’,
we would have name1(9) = *Capi’ and name2(9) = ’'tal °’.

contains (unscaled) values for all variables (z, s).

contains the values of the dual variables 7. The first m; components are current
estimates of A, the Lagrange multipliers for the nonlinear constraints. Good
values for A can sometimes assist convergence of the projected Lagrangian
algorithm. They may be provided to MINOS by the MPS file, but it may be
more convenient to define them in matmod on the first entry (ncycle = 0).

contains reduced costs for the variables and slacks (z,s), as printed in the
COLUMNS and ROWS sections of the solution.

is the primary work array used by MINOS. As in funobj or funcon, it may be
desirable to access parts of this array via common blocks.

Set finish = .true. if yon wish the cycles to be terminated; e.g., if some convergence
criterion has been satisfied. The following common blocks may be useful:

double precision cnvtol

common /cyclem/ cnvtol,jnew,materr,maxcy,nephnt,nphant ,nprint
logical gotbas,gotfac,gothes,gotscl

common /cyclel/ gotbas,gotfac,gothes,gotscl

Cycle tolerance may be used to specify a numerical value for cnvtol. The four logical
variables may be set to .true. to request various Warm or Hot starts (see Page 121).

2.6 Mutrix Data Structure 15

2.5 Subroutine MATCOL

If PHANTOM COLUMNS ¢ and PHANTOM ELEMENTS e are defined in the SPECS file (along with CYCLE
LIMIT &), this subroutine may be called by MATMOD up to ¢ times throughout cycles 2 through k.
The aim is to turn at most ¢ “phantom columns” into normal columns containing a total of at
most ¢ nonzero elements. MATMOD must provide an array COL(*) and a zero tolerance ZTOL for
each call. The significant elements of COL will be packed into the matrix data structure, to form
a new column. The associated variabie will be given the default LOWER and UPPER bounds, and a
scale factor of 1.0,

Specification:
SUBROUTINE MATCOL(M, N, NB, NE, NKA,
* A, HA, XA, BL, BU, COL, ZTOL)
IMPLICIT REAL*8 (A-H,0-2)
INTEGER*2 HA (NE)
INTEGER KA (NKA)
DIMENSION A(NE), BL(NB), BU(NB), COL(W)
Parameters:
M (Input) The length of the array COL. Usually this will be m, the number of rows in the

constraint matrix. In general, it may be anywhere in the range 1 < M < m, if the new
column is known to be zero beyond position M.

COL(*) {Input) The deunse vector that is to become a new matrix column.

ZTaL (Input) A zero tolerance for deleting negligible elements from COL when it is packed
into A and HA. On most machines, a reasonable value is ZTOL = 1.0E-8,

The other parameters come directly from MATMOD. For further details, see the CYCLE options in
section 3.3, and the example in section 8.5.

2.6 Matrix Data Structure

In the MINOS source code, the constraint matrix A is stored column-wise in sparse format in the
arrays A, HA, KA, as defined in the specifications of subroutine MATMOD (section 2.4). The matrix
I associated with the slack variables is represented implicitly. If the objective function contains
linear terms ¢”z + dTy, then {eT dT) is included as the I0BJ-th row of A (see the COMMON block
MSLOBJ below).

If there are nonlinear constraints, the top left-hand corner of A is loaded with the current
Jacobian matrix at the start of each major iteration.

The following COMMON blocks contain dimensions and other 1tems relating to the storage of

A

COMMON JU3LEN / M ;N ,NB ,NSCL
M m, the number of rows in A, including the linear objective row (il any).
N n, the number of columns in A4, possibly including ¢ “phantom columns”.

NB n + m = N+N, the total number of variables in the problem, including the slacks.
NSCL Either NB or 1, depending on whether SCALE has been specified or not.

i6

2, User-written Subroutines

NE
NKA

LHA
LKA

MAXS
MBS
NN
NNO

SINF
WTOBJ
MINIMZ
NINF
10BJ

FOBJ
FOBJ2
NNOBJ
NNOBJO

NJAC
NNCON
NNCONOC
NNJAC

COMMON /M2MAPA/ NE JNKA LA J,LHA LKA

The number of nonzero clements in A, possibly including e “phantom elements”.

n + 1 = N+1, the number of pointers in the array KA.
The address of A(*) in the work array Z(*).

The address of HA(*) in the work array Z(s).

The address of KA(*) in the work array Z(*).

COMMON JMBLEN / MAXR ,MAXS MBS , NN ,NNO ,NR LNX
The HESSIAN DIMENSION,

The SUPERBASICS LIMIT.

M+MAXS, the maximum number of basic and superbasic variables.

ny = max{NNOBJ, NNJAC}, the number of NONLINEAR VARIABLES.

max{1, KN}.

The dimension of the array R that is used to approximate the reduced Hessian, R.

max{MBS, NN}.

COMMON /MSLOBJ/ SINF ,WTOBJ ,MINIMZ,NINF ,IOBJ

The current sum of infeasibilities.

The scalar w used in the composite objective technique.

+1 if the objective is to be minimized; —1 if it is to be maxirmized.
The current number of infeasibilities.

The row number for the linear objective. (If IOBJ is zero, there is no such row.)

COMMON /JMTLEN / FOBJ ,FOBJ2 ,NNOBJ ,NNOBJO

The current value of the function value F returned by FUNOBJ.
A temporary value of FOBJ.

n}, the number of NONLINEAR OBJECTIVE VARIABLES.

max{1, NNOBJ}.

COMMON /MBLEN / NJAC ,NNCON ,NNCONO,NNJAC
The number of elements in the Jacobian.

m,, the number of NONLINEAR CONSTRAINTS.

max{1, NNCON}.

'n’{, the number of NONLINEAR JACOBIAN VARIABLES.

3.1 SPECS File Format 17

3. THE SPECS FILE

The SPECS file sets various run-time parameters that describe the nature of the problem being
solved and the manner in which a solution is to be obtained. The file consists of a sequence of
card images, each of which contains a keyword and certain associaled values.

The first keyword is BEGIN and the last keyword is END. Il the problem could be solved
using default values for all parameters, the SPECS file could consist of just those two keywords
{on separate cards). Normally, however, at least some of the parameters must be specified; for
example, the number of nonlinear variables if there are any.

3.1 SPECS File Format

Each card in the SPECS file contains a sequence of itemns in free format (they may appear
anywhere in columns 1 to 72). The items are separated by spaces or cqual signs (* ’ or ‘=)
Those selected from each card are:

1. The first word (the keyword). Only the first 3 characters are significant.

2. The second word (if any). Sometimes this is the keyword’s associated name value, an 8-
character name. More often it qualifies the keyword, and its first 4 characters are significant.

3. The first number (if any). This may be an integer value or a real value; up to 8 characters in
Fortran's I, F, E or D format.

In the following examples the significant characters are underlined:

OBJECTIVE PROFIT _
SOLUTION FILE 12

ROWS 500

ROW TOLERANCE 0.0001
LOWER BOUND =1.0
AIJ TOL 1.0E-8

If the first character of an item is one of the following numeric characters
12345687890+ -

then the item is taken to be a number. The number may be from 1 to 8 contiguous numeric
characters, including an E or a D if need be. It is terminated by a non-numeric character such as -
a space. ' '

{An exception is made for the keywords OBJECTIVE, RHS, RANGE and BOUND, which specify
names to be extracted from the MPS file. For these keywords the second item is taken Lo be the
required name value even if it begins with a numeric character. Thus,

AlJ TOLERANCE .00001
OBJECTIVE .00001
RHS ...2ZE001
BOUND +1000

are all allowed. However, names like OBJECTIVE = COST or RHS = DEMANDO2 will be more com-
mon.)

Blank cards and comments may be used to improve readability. A comment begins with an
asterisk {*#') and includes all subsequent characters on the same card; these arc ignored. The '+’
may be the first non-blank character on the card, or the first non-blank after a space or an equal
sign. For example:

18 3. The SPECS File

% WPS file parameters
*

ROWS 1000 * {or less)
COLUMNS 2000 * (or less)
ELEMENTS 8000 * (or less)
OBJECTIVE = PROFITO02 #* (the 2nd N row)

Scanning terminates once a number has been recognized. An asterisk is therefore not essential
following a numbes:

WEIGHT ON OBJECTIVE = 10.0 DURING PHASE 1

3.2 SPECS File Checklist and Defaults

The following example SPECS file shows all valid keywords and their default values. The keywords
are grouped according to the function they perform.

Some of the default values depend on ¢, the relative precision of the machine being used. The
values given here correspond to double-precision arithmetic on TBM 360 and 370 systems and
their successors (€ == 2.22 X 10-18). Similar values would apply to any machine having about 15
decimal digits of precision.

BEGIN checkliat of SPECS file parameters and their default values
*

+ Keywords for the MPS file

E]

MINIMIZE *» (opposite of MAXIMIZE)

OBJECTIVE = ? » the first name encountered

RHS = ? » the first name encountered

RANGE = ? » the first name encountered

BOUNDS = ? + the first name encountered

ROWS 100 *

COLUMNS . 300 . % or 3*ROWS

ELEMENTS {or COEFFICIENTS) 1600 * or 5+«COLUMNS

AIJ TOLERANCE 1.0E-10 =*

LOWER BOUND Q.0 »

UPPER BOUND 1.0E+20 * plus infinity

MPS FILE ? » depends on installation

LIST LIMIT 0 + for printing MPS data

ERROR MESSAGE LIMIT 10 * during MPS input

»

» Keywords for the simplex method

*

CRASH OPTION 1 * all variables eligible for initial basis
ITERATIONS LIMIT 300 * or 3*ROWS + 10=NONLINEAR VARIABLES
PARTIAL PRICE i * or COLS/ (2+ROWS) if COLS is large
MULTIPLE PRICE 1 + BEWARE - not like commercial LP

WEIGHT ON LINEAR OBJECTIVE 0.0 » during phase 1

3.2 SPECS File Checklist and Defaulits

SUMMARY FILE o] * > 0 for occasional output to terminal
SUMMARY FREQUENCY 100 * iteration log on SUMMARY file
LOG FREQUENCY 1 * iteration log on PRINT file
CHECK FREQUENCY 30 * numetrical test on row residuals
FACTORIZATION FREQUENCY 50 * refactorize the basis matrix
SAVE FREQUENCY 100 * basis map

SCALE N0 * linear constraints and variables
SOLUTION YES * on PRINT file

*

* BASIS fles

*

OLD BASIS FILE 0 * input basis map

NEW BASIS FILE 0 * output basis map

BACKUP BASIS FILE 0 * output basis map

INSERT FILE 0 * input in industry format

PUNCH FILE 0 * output INSERT data

LOAD FILE 0 * input names and values

DUMP FILE o * output LOAD data

SOLUTION FILE 0 * separate from printed solution

*

* Convergence and stability tolerances
L

J

L}

FEASIBILITY TOLERANCE 1.0E-8 * for satisfying bounds
OPTIMALITY TOLERANCE 1.GE-8 * for reduced gradients

PIVOT TOLERANCE 3.7B-11 » ¢}

LU FACTOR TQLERANCE 10.0 * limits size of multipliers in L
LU UPDATE TOLERANCE 10.0 » the same during updates

]

* Parameters for nonlinear problems
*

NONLINEAR CONSTRAINTS 4] * must be the exact number, m;
NONLINEAR VARIABLES 0 * must be the exact number, ny
NONLINEAR OBJECTIVE VARIABLES O * use if different from Jacobian variables
NONLINEAR JACOBIAN VARIABLES 0 * use if different from objective variables
SUPERBASICS LIMIT- 1 * or HESSTAN DIMENSION

HESSIAN DIMENSION b | * or SUPERBASICS LINIT

*

PROBLEM NUMBER 0 * sets subroutine parameter NPROB
DERIVATIVE LEVEL 3 * assumes all gradients are known
VERIFY LEVEL 0 * gives cheap check on gradients
EMERGENCY VERIFY LEVEL 0 * cheap check before stopping

»

START OBJECTIVE CHECK AT COL 1 »

STOP OBJECTIVE CHECK AT COL ny .

START CONSTRAINT CHECK AT COL i *

STOP CONSTRAINT CHECK AT COL 4 *

20

3. The SPECS File

LINESEARCH TOLERANCE
SUBSPACE TOLERANCE
FUNCTION PRECISION
DIFFERENCE INTERVAL

CENTRAL DIFFERENCE INTERVAL
L]

0.
0.
3.0E-13
5.
8.

=~ O ;e

E-7
E-5

* Further parameters for nonlinear constraints

]

JACOBIAN

LAGRANGIAN

MAJSOR ITERATIONS
MINOR ITERATIONS
PENALTY PARAMETER
DAMPING PARAMETER

.

COMPLETION

ROW TOLERANCE
RADIUS OF CONVERGENCE
PRINT LEVEL (JFLXB)
3

* Sequences of related problems
]

CYCLE LIMIT

CYCLE PRINT

CYCLE TOLERANCE

PHANTOM COLUMNS

PHANTOM ELEMENTS

]

* Miscellaneous

]

DEBUG LEVEL

LINESEARCH DEBUG AFTER ITN
WORKSPACE (USER)

WORKSPACE (TOTAL)

» SUPPRESS PARAMETER LISTING
END of SPECS file checklist

DENSE
YES

20

40
100.0/m,
2.0

PARTIAL
1.0E-8
0.01
00001

O OO0 M
o

999999

L AR S B B

#* #® ¥ ® ®

* % % *

smailer for more accurate search
affects when to PRICE

¢®# {almost full accuracy)
(FUNCTION PRECISION)}
(FUNCTION PRECISION)}

may need to be larger if very nonlinear
affects step-size between subproblems

FULL il no nonlinear constraints
aJlowable nonlinear constraint violation
for reducing the penalty parameter
J(zk), f{zx), Ak, Tk, Basis statistics

depends on installation

3.3 SPECS File Definitions 21

3.3 SPECS File Definitions

The following is an alphabetical list of recognized SPECS file keywords. A typical use of each
keyword is given, along with a definition of the quantities involved and comments on usage. In
many cases the value associated with a keyword is denoted by a letter such as &, and allowable
values for & are subsequently defined.

AI] TOLERANCE ¢ {default ¢ =1 .OE"‘.I.O)
During input of the MPS file, matrix coefficients a;; will be ignored if |a;;| < ¢.

If a,; is a Jacobian element, it is not ignored. (Its position is recorded, and it will retain the
value ¢ if DERIVATIVE LEVEL = 2 or 3 and FUNCON does not reset the corresponding element of
G.)

If CYCLE LIMIT > 1 and gy; is to be changed from zero to a value greater than ¢ during a
later cycle, set ¢ = 0.0 to retain all entries in the MPS file.

BACKUP BASIS FILE k (default &k = 0)
This is intended as a safeguard against losing the results of a long run. Suppose that a NEW
BASIS FILE is being saved every 100 iterations, and that MINOS is about to save such a basis at
iteration 2000. 1t is conceivable that the run may time-out during the next few milliseconds (i.e.,
in the middle of the save), or the host computer could unexpectedly crash. In this case the basis
file will be corrupted and the run will have been essentially wasted.

To eliminate this risk, both a NEW BASIS FILE and a BACKUP BASIS FILE may be specified.
The following would be suitable for the above example:

OLD BASIS FILR 11 (or 0)
BACKUP BASIS FILE 1t
NEW BASIS FILE 12

SAVE FREQUENCY 100

The current basis will then be saved every 100 iterations, first on file 12 and then immediately
on file 11. If the run is interrupted at iteration 2000 during the save on file 12, there will still be .
a useable basis on file 11 (corresponding to iteration 1900).

Note that a NEW BASIS will be saved at the end of a run if it terminates normally, but there
is no need for a further BACKUP BASIS. In the above example, if an optimum solution is found
at ileration 2050 (or if the iteration limit is 2050), the final basis on file 12 will correspond to
iteration 2050, but the last basis saved on [ile 11 will be the one for iteration 2000.

BOUNDS BOUNDO1
This specifies the 8-character name of the bound set to be selected from the MPS file.

1. BNDS is a valid alternative keyword.

2. If BOUNDS is not specified, or if the name is blank, the first bound set in the MPS file will be
sclected.

3. If the MPS file contains one or more bound sets but you do not want any of them to be used,
specify a dummmy name such as BOUND = NONE.

22 3. The SPECS File

CENTRAL DIFFERENCE INTERVAL hy (default hy = (FUNCTION PRECISION)Y)
When DERIVATIVE LEVEL < 3, the central-difference interval hy is used near an optimal solution
to obtain more accurate (but more expensive) estimates of gradients. Twice as many function
evaluations are required compared to forward differencing. The interval used for the j-th variable
is h; = ha(l + |z,}). The resulting gradient estimates should be accurate to O(h?), unless the
functions are badly scaled.

CHECK FREQUENCY k (default k& = 30)

Every k-th iteration after the most recent basis actorization, a numerical test is made to see if
the current solution z satisfies the general linear constraints (including any linearized nonlinear
constraints, if any). If these are Az + s = 0 where s is the set of slack variables, the residual
vector r = Az + s is computed. If the largest component of r is judged to be too large, the current
basis is relactorized and the basic variables are recomputed to satisfly the general constraints more
accurately.

COEFFICIENTS 5000
See ELEMENTS.

COLUMNS n {default n = 3+ROWS)

This must specify an over-estimate of the number of columns in the constraint matrix (excluding
slack variables, but including any PHANTOM COLUMNS). If n proves to be too small, MINOS will
continue reading the MPS file to determine the true value of n, and an appropriate warning
message will be issued. If the MPS file number is the same as the system card reader, the problem
will then be terminated; otherwise the MPS file will be re-read.

COMPLETION ' PARTIAL (default)

COMPLETION FULL

When there are nonlinear constraints, this determines whether subproblems should be solved to
moderate accuracy (PARTIAL completion), or to full aceuracy (FULL completion). MINOS eflects
the option by using two sets of convergence tolerances for the subproblems.

Use of partial completion may reduce the work during early major iterations, unless the MINOR
ITERATIONS limit is active. The optimal set of basic and superbasic variables will probably be
determined for any given subproblem, but the reduced gradient may be larger than it would have
been with full completion. .

An automatic switch to full completion occurs when it appears that the sequence of major
iteralions is converging. The switch is made when Lhe nonlinear constraint crroris reduced below
100+(ROW TOLERANCE), the relative change in Ax is 0.1 or less, and the previous subproblem was
solved to optimality.

Full compietion tends to give better Lagrange-multiplier estimates. It may lead to fewer
major iterations, but may result in more minor iterations.

CRASH option k (default k = 3)

If a basis file is not specified, a triangular basis will be selected from certain rows and columns of
the constraint matrix (A I). Free rows and variables are given priority. Slack columns {from I)
are added where necessary. Please see Page 120 for further details.

3.3 SPECS File DeBnitions 23

CRASH toleranca t (default ¢ = 0.1)

This tolerance allows CRASH to ignore certain “small” nonzeros in the constraint matrix while
searching for a triangular basis. For each column of A, if @pay is the largest element in the column,
other nonzeros in that column are ignored if they are less than or equal to amay X .

When ¢t > 0.0, the basis obtained by CRASH may not be strictly triangular, but it is likely
to be nonsingular and almost triangular. The intention is to obtain a starting basis with more
structural variables and fewer {arbitrary) slacks. A feasible solution may be reached sooner on
some problems.

CYCLE LIMIT ! (default { = 1)
CYCLE PRINT p (defauit p = 1)
CYCLE TOLERANCE ¢ (default ¢ = 0.0)
PHANTOM COLUMNS ¢ (default ¢ = 0)
PHANTOM ELEMENTS (default e = 0)
These keywords refer to a facility for constructing and solving a sequence of related problems, as
described in sections 1.9, 2.4 and 2.5. The COMMON block
COMMON /CYCLCM/ CNVTOL, JNEW, MATERR, MAXCY, NEPHNT, NPHANT, NPRINT
contains certain relevant variables.

1. | = MAXCY is the maximum number of problems to be solved.

2. p = NPRINT controis the printing of intermediate solutions. At most, the last p solutions will
be output.

3. t = CNVTOL is a real number for possible use in a user-specified convergence test within
subroutine MATMOD.

4. ¢ = NPHANT i3 the number of columns that can be added to the constraint matrix beyond
those specified in the MPS file. Each column must be added by means of a call to subroutine
MATCOL. If an error occurs, MATCOL increments MATERR (which is initially zero). Otherwise,
JNEW records the index of the new column.

9. e == NEPHNT is the number of noniero elements that are allocated to the “phantom ¢olumns”
beyond those specified in the MPS file.

L.]

DAMPING PARAMETER ™ d (default d = 2.0)
This parameler may assist convergence on problems that have highly nonlinear constraints. It is
intended to prevent large relative changes between subproblem solutions (zy, M) and (Zx41, Ak+1)-
For example, the default value 2.0 prevents the relative change in cither z; or Ay from exceeding
200 per cent. [t will not be active on well-behaved problems. .

The parameter is used to interpolate between the solutions at the beginning and end of each
major iteration. Thus, zxy; and My are changed to

Th + (Zayt — Za) and Me + o{Agsr —)u.)_
for some step-length o < 1. {In the case of nonlinear equations, this gives a damped Newton
method.)

*Now called Major damping parameter,

24 3. The SPECS File

{. This is a very crude control. If the sequence of major iterations does not appear to be
converging, one should first re-run the preblem with a higher PENALTY PARAMETER p (say 10

or 100 times the default p). (Skip this re-run in the case of nonlinear equations. There are
no degrees of freedom and the value of p is trrelevant.)

2. If the subproblem solutions continue to change violently, try reducing d to 0.2 or 0.1 (say).
3. For implementation reasons, the shortened step o applies to the nonlinear variables z, but

not to the linear variables y or the slack variables 3. This may reduce the efliciency of the
control.

DEBUG LEVEL d {default d = 0)
This causes various amounts of information to be output to the PRINT file.

k Meaning
0 No debug output.
2 {or more) Output from MSSETX showing the maximum residual after a row check.

40 Output from LUBRPC showing the position of the last nonzero in the transformed
incoring columa.

50 Output from LU2FAC showing each pivot row and column and the dimensions of the
dense matrix involved in the associated elimination.

100 Output from M2BFAC and MELOG listing the basic and superbasic variables and their
' values at every iteration.

DERIVATIVE LEVEL d (default d = 3)

This specifies which nonlinear function gradients are known analytically and will be supplied to
MINOS by the user subroutines FUNOBJ and FUNCON.

d Meaning
3 All objective and constraint gradients are known.
2 All constraint gradients are known, but some or all components of the objective gradient

are unknown.

1 The objective gradient is known, but some or all of the constraint gradients are un-
known,
0 Some components of the objective gradient are unknown and some of the constraint

gradients are unknown.

3.3 SPECS File DeRnitions 25

The value 4 = 3 should be used whenever possible. It is the most reliable and will usually be the
most efficient.

[f d = 0 or 2, MINOS will estimate the missing components of the objective gradient,
using finite differences. This may simplify the coding of subroutine FUNOBJ. However, it could
increase the total run-time substantially (since a special call to FUNOBJ is required for each missing
element), and there is less assurance that an acceptable solution will be located. If the nonlinear
variables are not well scaled, it may be necessary to specily a nonstandard DIFFERENCE INTERVAL
(see below).

If d = 0 or 1, MINOS will estimate missing elements of the Jacobian. For each column of the
Jacobian, one call to FUNCON is needed to estimate all missing elements in that column, if any. If
JACOBIAN = SPARSE and the sparsity pattern of the Jacobian happens to be

L . .
7T ?

» ?
L] *

where * indicates known gradients and ? indicates unknown elements, MINOS will use one call
to FUNCON to estimate the missing element in column 2, and another call to estimate both missing
elements in column 3. No calls are needed for columns 1 and 4.

At times, central differences are used rather than forward differences, Twice as many calls
to FUNOBJ and FUNCON are then needed. (This is not under the user’s control.)

Remember: when analytic derivatives are not provided, the attainable accuracy in locating
an optimal solution is usually less than when all gradienta are available. DERIVATIVE LEVEL 3 is
strongly recommended.

DIFFERENCE INTERVAL hy (default hy = (FUNCTION PRECISION)})
This altecs the interval ky that is used to estimate gradients by forward differences in the following
circumstances:

1. In the initial {“cheap”) phase of verifying the objective gradienta.

2. For verilying the constraint gradients.

3. For estimating missing objective gradients.

4. For estimating missing Jacobian elements.
In the last three cases, a derivative with respect to z; is estimated by perturbing that component
of z to the value z; + hy(1 + |z4]}, and then evaluating F(z} or f(z) at the perturbed point. The
resulting gradient estimates should be accurate to O(h,) unless the functions are badly scaled.
Judicious alteration of h; may sometimes lead to greater accuracy.

DUMP FILE f {default f = 0)
If f > 0, the last solution obtained will be output to file f in the format described in section 5.3.
The file will usually have been output previously as a LOAD file.

ELEMENTS e (default e = 5+COLUMNS)
This must specify an over-estimate of the number of nonzero elements {coefficients a,;) in the
constraint malrix, including all cntries in a DENSE or SPARSE Jacobian, and all nonzeros in the
matrices A;, Az, Az. (It should also include the number of PHANTOM ELEMENTS, if any.)

1. COEFFICIENTS is a valid alternative keyword.

2. If e proves to be too small, MINOS continucs in the manner described under CGLUMNNS.

26 3. The SPECS File

EMERGENCY VERIFY LEVEL
See VERIFY LEVEL.

ERROR MESSAGE LIMIT e (defa.ult e = 10)

This is the maximum number of error messages to be printed for each type of error occurring
when the MPS file is read. The default value is reasonable for early runs on a particular MPS
file. If the same file is used repeatedly, e can be reduced to suppress warning of non-fatal errors.

FACTORIZATION FREQUENCY k (default k = 50)
At most k basis changes will occur between factorizations of the basis matrix.

1. With linear programs, the basis factors are usually updated every iteration. The default k is
reasonable for typical problems. Higher vaiucs up to k£ = 100 (say) may be more efficient on
problems that are extremely sparse and well scaled.

2. When the objective function is nonlinear, fewer basis updates will occur as an optimum ia
approached. The number of iterations belween basis lactorizations will therefore increase.
During these iterations a test is made regularly (according to the CHECK FREQUENCY) to ensure
that the general constraints are satisfied. If necessary the basis will be refactorized before
the limit of k updates is reached.

3. When the constraints are nonlinear, the MINOR ITERATIONS limit will probably preempt &.

FEASIBILITY TOLERANCE t (default ¢ = 1.0E-8)

A feasible solution i3 one in which all variables satisfy their upper and lower bounds to within
the absolute tolerance ¢ {This includes slack variables. Hence, the general linear constraints are
also satisfied to within ¢.)

1. MINOS attempts to find a feasible point before aptimizing the objective function. If the sum
of infeasibilitics cannot be reduced to zero, the problem is declared INFEASIBLE. Let SINF
be the corresponding sum of infeasibilities. If SINF is quite small, it may be appropriate to
raise ¢ by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

2. Note: il SINF is not small, there may be other points that have a significantly smaller sum of
infeasibilities. MENOS does not attempt to find the solution that minimizes the sum.

3. If SCALE is used, feasibility is defined in terms of the scaled problem (since it is then more
likely to be meaningful).

A. A nonlinear objective function F(z) will be evaluated only at feasible points. If there are
regions where F(z) is undefined, every attempt should be made to eliminate these regions
from the problem. For example, if #(z) = /71 + log z3, it is essential to place lower bounds
on botlh variables. If FEASIBILITY TOLERANCE = 108, the bounds z; > 1075 and z3 >
10—* might be appropriate. (The log singularity is more serious; in general, keep z as far
away from singularities as possible.)

5. Bounds should also be used to keep z more than ¢ away from singularities in f(z).

8. If there are any nonlinear constraints, each major iteration attempts to satisfy their lineariza-
tion to within the tolcrance ¢. If this is not possible, the bounds on the nonlinear conabraints
are relaxed temporarily (in several stages).

7. Feasibility with respect to the nonlinear constraints themsclves is measured against the ROW
TOLERANCE (not against). The relevant test is made at the start ol a major iteration.

3.3 SPECS File Definitions 27

FUNCTION PRECISION €r (default € = €%-8)

The relative function precision eg is intended to be a measure of the relative aceuracy with which
the nonlinear functions can be computed. For example, if F(z) is computed as 1000.56789 for
some relevant z and if the first 6 significant digits are known to be correct, the appropriate value
for e would be 1.0E-8.

(Ideally the functions F(z) or f*(z) should have magnitude of order 1. If all functions are
substantially less than 1 in magnitude, ez should be the absolute precision. For example, if
F(z) = 1.234568789E-4 at some point and if the first 6 significant digits are known to be correct,
the appropriate value for er would be 1.0E-10.)

1. The default value of ¢g is appropriate for simple analytic functions.

9. In some cases the function values will be the result of extensive computation, possibly
involving an iterative procedure that can provide rather few digits of precision at reasonable
cost. Specifying an appropriate FUNCTION PRECISION may lead to savings, by allowing the
Yinesearch procedure 1o ferminate when the difference between function values along the
search direction becomes as small as the absolute error in the values.

HESSIAN DIMENSION r (default » = SUPERBASICS LIMIT or 30)
This specifies that an # X r triangular matrix R is to be available for use by the quasi-Newton
algorithm (to approximate the reduced Hessian matrix according to ZTHZ = R"R). Suppose
there are s superbasic variables at a particular iteration. '

1. If s < r, the first s columns of R will be used to approximate the reduced Hessian in the
normal manner. If there are no further changes to the set of superbasic variables, the rate
of convergence will ultimately be superlinear.

= (")

will be used to approximate the reduced Hessian, where 2, is an r X r upper triangular
matrix and D is a diagonal matrix of order s — r. The rate of convergence will no longer be
superlinear.

3. The storage required is of order 72, which is substantial if r is as large as 200 (say). In general,

2. If 8 > r, a matrix of the form

r should be a slight over-estimate of the final number of superbasic variables, whenever storage -

permits. It need not be larger than ny + 1, where n, is the number of nonlinear variables,
For many problems it can be much smaller than n,.

4. If SUPERBASICS LIMIT s is specified, the default value of r is the same number, » {and
conversely). This is a safeguard Lo ensure superlinear convergence wherever possible. If
neither 7 nor 4 is specified, both default to the value 30.

INSERT FILE f (default £ = 0)
If f > 0, this references a file containing basis information in the format of section 5.2.

1. The file will usually have been output previously as a PUNCH file.
9. The file will not be accessed if an OLD BASIS file is specified.

INVERT FREQUENCY
See FACTORIZATION FREQUENCY.

28 3. The SPECS File

ITERATIONS LIMIT 3 (default £ = 3+#ROWS + 10+NONLINEAR VARS)

This is the maximum number of minor iterations allowed (i.e., iterations of the simplex method
or the reduced-gradient algorithm).

1. ITNS is an alternative keyword.
2. £ = 0 is valid. Both feasibility and optimality are checked.

3. If CYCLE LIMIT > 1, the limit of & minor iterations applies to each cycle separately.

JACOBIAN DENSE (defauit}
JACOBIAN SPARSE

This determines the manner in which the constraint gradients are evaluated and stored. It affects
the MI’S file and subroutine FUNCON.

1. The DENSE option is convenient if there are not many noalinear constraints or variables. It
requires storage for three dense matrices of order m; X n,.

2. The MPS file may then contain any number of Jacobian entries. Usually this means no entries
at all.

3. For efficiency, the SPARSE option is preferable in all nontrivial cases. (Beware— it must be
specifically requested.) The MPS file must then specify the position of all Jacobian elements
(that are not identically 2ero), and subroutine FUNCON must store the elements of the Jacobian
array G in exactly the same order.

4. In both cases, if DERIVATIVE LEVEL = 2 or 3 the MPS file may specify Jacobian elements
that are constant for all values of the nonlinear variables. The corresponding elements of G
need not be reset in FUNCON.

LAGRANGIAN YES (default)

LAGRANGIAN NO

This determines the form of the objective function used for the linearized subproblems. The

default value YES is highly recommended. The PENALTY PARAMETER value is then also rejevant.
If NO is specified, subroutine FUNCON will be called only twice per major iteration. Hence

tilis option may be useful if the nonlinear constraint functions are very expensive to evaluate.

However, in general there is a great risk that convergence may not occur. {Note: FUNCON will be

called more often to estimate J(z) if DERIVATIVE LEVEL < 2.)

LINESEARCH DEBUG AFTER ITERATIUNG (cefault i = 999998)

This causes considerable information to be output by the linesearch procedures every iteration,
once itcration ¢ has been completed. Its principal purpose is to assist the authors of the linesearch
procedures to determine il the procedures are lunctioning correctly. In some cases it may confirm
that the function values are very “noisy”, or that the gradients computed in FUNOBJ or FUNCON
are incorrect. ‘

i

3.3 SPECS File Definitions 29

LINESEARCH TOLERANCE t (default ¢t = 0.1)
For nonlinear problems, this controls the accuracy with which an optimum of the merit function
will be located along the direction of search each iteration.

1. t must be a real value in the range 0.0 < ¢t < 1.0.

2. The default value £ == 0.1 requests a moderately accurate search. It should be satisfactory
for many problems.

3. If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate;
try t = 0.01 or t = 0.001. The number of iterations should decrease, and this will reduce

total run time if there are many linear or nonlinear constraints.

4. 1 the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate.
If all gradients are known, try t = 0.5 or perhaps ¢ = 0.9. (The number of iterations will
probably incrcase, but the total number of [unction evaluations may decrease enough to

compensate.)

5. If not all gradients are known, a reasonably accurate search remains appropriate. Each search
will require only 2-5 function values (typically), but many function calls will then be needed
to estimate missing gradients for the next iteration.

LIST LIMIT k (default k = 0)
This limits the number of lines of the MPS file to be listed on the PRINT file during input. The

header cards (NAME, ROWS, COLUMNS, RHS, RANGE, BOUNDS, ENDATA) and comment cards will always
be listed, along with their position in the file.

LOAD FILE " ! (default f = 0)
If f > 0, this references a file containing basis information in the format of section 5.3.

1. The fle will usually have been output previously as a DUMP file.
2. The file will not be accessed if an OLD BASIS file or an INSERT file is specified.

LOG FREQUENCY k (default k = 1)
One line of the iteration log will be printed every k-th minor iteration. A value such as k = 10

is-suggested for those interested only in the final solution.

LOWER BOUND { (default { = 0.0)
Before the BOUNDS section of the MPS file is read, all structural variables are given the default
lower bound {. (Individual variables may subsequently have their lower bound altered by a

BOUND set in the MPS file.)
1. LOWER BOUND = 1.0E-5 (say) is a useful method for bounding all variables away from sin-
gularitics at zero. (Explicit bounds may also be nccessary in the MPS file.)

2. If all or most variables are to be FREE, use LOWER BOUND = -1.0E+20 to specify “minus
infinity”. (The default upper bound is already 1.0E+20, which is treated as “plus infinity”.)

30 3. The SPECS File
LU FACTOR TOLERANCE ty (default ¢, = 10.0)
LU UPDATE TOLERANCE ta (default t3 = 10.0)

These tolerances affect the stability and sparsity of the basis factorization B = L{7, during
refactorization and updates respectively. Bolh tolerances must satisfy ¢, 2 1.0. The matrix L is
a product of matrices of the form
1
(o 1)

1. The default values & = 10.0 usually strike a good compromise between stability and sparsity.

where the multipliers u will satisfy |u} < .

2. For large and relatively dense problems, £; = 25.0 (say) may give a marked improvement in
sparsity without impairing stability to a serious degree.

3. For certain very special structures (e.g., band matrices) it may be neccssary to set ¢; in the
range 1.0 < ¢; < 2.0 to achieve stability.

MAJOR ITERATIONS k (default k = 20)

This is the maximum number of major iterations allowed. it is intended to guard against an
excessive number of linearizations of the constraints, since in some cases the sequence of major
iterations may not converge.

For preliminary runs on a new problem, a fairly low MAJOR ITERATIONS limit should be
specified (e.g., 10 or 20). See the advice given under PENALTY PARAMETER.

MAXIMIZE

MINIMIZE (default)

This specifies the required direction of optimization. It applies to both linear and nonlinear terma
in the objective.

MINOR ITERATIONS k (default k == 40)

This is the maximum number of iterations allowed between successive linearizations of the non-
linear constraints. A moderate value (e.g., 10 < k < 50) prevents excessive effort being expended
on early major iterations, but allows later subproblems to be solved to completion.

In general it is unsafe to specify a value as small as ¥ = 1 or 2. (Even when an optimal
solution has been reached, a few minor iterations may be needed for the corresponding subproblem
to be recognized as optimal.)

Note that an independent limit on tutal iterations should be specified by the ITERATIONS

keyword as usual. If the problem is linearly constrained, this is the only limit (i.e.,, the MINOR
ITERATIONS keyword is ignored).

MPS FILE ! (default f = ?)
This is the file number for the MPS file. The default value is the system card reader IREAD, which
is often f = 5.

1. INPUT FILE is a valid alternative keyword.

2. For nontrivial problems it is usually best to store the MPS file separately from the SPIICS
file. If the ROWS, COLUMNS or ELEMENTS estimatcs prove to be too low, MINOS will be able to
rewind the MPS file and try again.

3.3 SPECS File Definitions 31

MULTIPLE PRICE k (default k = 1)

Whenever a PRICE operation is performed, the & best nonbasic variables wiil be selected for
admission to the superbasic set. (“Best” means the variables with largest reduced gradients of

appropriale sign. If partial pricing is in effect, up to & variables are selected from the current
partition of A and [.)

1. The default value k& = 1 is best for linear programs, since an optimal solution will have zero
superbasic variables.

2. Warning: if k > 1, MINOS will go into reduced-gradient mode even on purely linear problems.
The subsequent iterations do not correspond to the very efficient suboptimization. (“minor
iterations”) carried out by standard linear programming systems using multiple pricing.
(MINOS varies all superbasic variables simultaneously. However, its storage requirements
are essentially independent of & on linear problems. Thus, & need not be limited to 5 or 8 as
it is in standard systems, which require storage for & dense vectors of dimension m.)

3. On large nonlinear problems it may be important to set k > 1, if the starting peint does
not contain many superbasic variables. For example, if 2 problem has 3000 variables and 500
of them are nonlinear, the optimal solution may well have 200 variables superbasic. If the
problem is solved in several runs, it may be beneficial to use k = 10 (say) for early runs,
until it seems that the number of superbasics has levelled off.

NE® BASIS FILE ! (default f = 0)
If f > 0, a basis map will be saved on file f every k-th iteration, where & is the SAVE FREQUENCY.

1. The first card of the file will contain the word PROCEEDING if the run is still in progress.

2. If £ > 0, a basis map will also be saved at the end of a run, with some other word indicating
the final solution status.

NONLINEAR CONSTRAINTS my (default my; = 0)
NONLINEAR VARIABLES ny (default ny = 0)
NONLINEAR OBJECTIVE VARIABLES nf (default n| = 0)
NONLINEAR JACOBIAN VARIABLES nf (default nf = 0)

These keywords define the parameters M and N in subroutines FUNOBJ and FUNCON. For example,
W in FUNCON will take the value my, if my > 0.

1. If the objective function and the constraints involve the same set of nonlinear variables z,

then NONLINEAR VARIABLES n; is the simplest way to set N to be the same value for both
subroutines.

2. Otherwise, the NONLINEAR OBJECTIVE and NONLINEAR JACOBIAN keywords should be used to
specify n} and nf separately.

3. I my =0, the value n{ = 0 is assumed regardless of n; or n/.
1

4, Remember that the nonlinear constraints and variables must always be the first ones in the
problem. It is usually best to place Jacobian variables before objective variables, so that n <
n (unless ny = 0). This affects the way the function subroutines should be programmed,
and the order in which variables should be placed in the COLUMNS section of the MPS file.

32 3. The SPECS File

OBJECTIVE COsST
This specifies the 8-character name of the type N row in the MPS file to be selected as the linear
part of the objective function (i.e., the objective function [or linear programs}.

L. If OBJECTIVE is not specified, or if the name is blank, the first N row in the ROWS section
of the MPS file will be selected. (Warning: objective rows must be listed after nonlinear
constraint rows in the ROWS section of the MPS file.)

2. If the ROWS section contains one or more N rows but you do not want any of them to be
used in the objective function, specify a dummy name. If the objective is defined cntirely by
subroutine FUNOBJ it may be helpful to specify O0BJECTIVE = FUNGBJ. (However, don't expect
a different name to invoke a different subroutine!)

OLD BASIS FILE f (default f = 0)
If £ > 0, the starting point will be obtained from this file in the format of section 5.1.

1. The file will usually have been output previously as a NEW BASIS FILE.

2. The file will not be acceptable if the number of rows or columns in the problem haa been
altered.

OPTIMALITY TOLERANCE ¢ (default ¢t = 1.0E-8)

This is used to judge the size of the reduced gradients d; = g, — 'x"a,-, where g; is the gradient
of the objective function corresponding to the j-th variable, a; is the associated column of the
constraint matrix (or Jacobian), and x is the set of dual variables.

1. By construction, the reduced gradients for basic variables are always zero. Optimality will
be declared if the reduced gradients for nonbasic variables at their lower or upper bounds
satisly

GilFl =~ or difllxl| < ¢
respectively, and if
121/lixll < ¢
for superbasic variables.

2. In the above tests, ||x|| is a measure of the size of the dual variables. It is included to make
the tests independent of a scale factor on the objective function.

3. The quantity actually used is defined by

o= i {=ils

i=1

|7l = max{o//m, 1},

so that only large scale factors are allowed for. If the objective is scaled down substantially,
the test for optimality reduces to corparing just d; against ¢.

3.3 SPECS File Definitions 33

PARTIAL PRICE P (default p =1 or ¢ {see below))

This parameter is recommended for large problems that have significantly more variables than
constraints. It reduces the work required for each “pricing” operation (when a nonbasic variable
is selected to become superbasic).

1. When p = 1, all columns of the constraint matrix (A) are searched.

2. Otherwise, A and I are partitioned to give p roughly equal segments A;, I; {(= 1 to p).
If the previous pricing search was successful on A;_y, I;—1, the next search begins on the
segments A;, I;. {(All subscripts here are modulo p.) If a reduced gradient is found that
is larger than some dynamic tolerance, the variable with the largest such reduced gradient
(of appropriate sign) is selected to become superbasic. (Several may be selected il MULTIPLE
PRICE has been specified.) If nothing is found, the search continues on the next segments

Aj 41, Ij41, and so on.

3. The default value of p is 1 for moderate-sized problems, but may be greater than 1 otherwise.
A quantity
¢ = max{1000, 4sROWS}

is defined. If COLUMNS > ¢ and PARTIAL PRICE has not been specified, p will take the value
COLUMNS/ Z*ROWS}.

4. PARTIAL PRICE p is recommended for time-stage models having p time periods.

PENALTY PARAMETER P (default p = 100.0/m,)
This is the value of p in the modified augmented Lagrangian. It is used only when LAGRANGIAN

= YES.

For early runs on a problem with unknown characteristics, something like the default value
should be specified. If the problem is known to be highly nonlinear, specily a larger value, such
as 10 times the default. In general, a positive value of p may be necessary to ensure convergence,

even for convex programas.

On the other hand, if p is too large, the rate of convergence may be unnecessarily slow. If
the functions are not highly nonlinear or a good starting point is known, it will often be sale to
specify PENALTY PARAMETER 0.0.

Il several related problems are to be solved, the following strategy for setting the PENALTY
PARAMETER may be useful:

1. Initially, use a moderate value of p, such as the default, and a reasonably low ITERATIONS
and/or MAJOR ITERATIONS limit.

9. If successive major iterations appear to be terminating with radically different solutions, the
penalty parameter should be increased. (See also the DAMPING PARAMETER.)

3. If there appears to be littie progress between major iterations, the penalty parameter could

be reduced.
PHANTOM COLUNMNS ' c (dcr ault ¢ = 0)
PHANTOM ELEMENTS ¢ (default e = 0)

See‘the CYCLE parameters.

M 3. The SPECS File

PIVOT TOLERANCE t (default t = €})

This allows the pivot tolerance to be altered if necessary. (The tolerance is used to prevent
columns entering the basis il they would cause the basis to become almost singular.) The default
value of ¢ is roughly 10~!! for doubie precision on IBM systems. This should be satisfactory in
most circumstances.

PRINT LEVEL (JFLXB) p (default p = 00001)
This varies the amount of information that will be output to the printer file. It is independent
of the LOG FREQUENCY. Typical values are

PRINT LEVEL 1
which gives normal output for linear and nonlinear problems, and
PRINT LEVEL i1

which in addition gives the values of the nonlinear variables zy at the start of each major iteration,
for problems with nonlinear constraints.
In general, the value being specified is best thought of as a binary number of the form
PRINT LEVEL JFLXB
where each letter stands for a digit that is either 0 or 1. The quantities referred to are:

B BASIS statistics, i.e., information relating to the basis matrix whenever it is refactorized.
X 2z, the nonlinear variables involved in the objective [unction or the constrainta.
L Ak, the Lagrange-multiptier estimates for the nonlinear constraints. (Suppressed if the

option LAGRANGIAN = NO is specificd, since Ay = 0 then.)
F f{zx), the values of the nonlinear constraint functions.
J J{(zx), the Jacobian matrix.

To obtain output of any item, set the corresponding digit to 1, otherwise to 0.

If J=1, the Jacobian matrix will be output column-wise at the start of each major iteration.
Column j will be preceded by the value of the corresponding variable z; and a key to indicate
whether the variable is basic, superbasic or nonbasic. (Hence if J=1, there is no reason to specify
X=1 unless the objective contains more nonlinear variables than the Jacobian.) A typical line of
output is

3 1.250000D0+01 BS 1 1.00000E+Q0 4 2.00000E+00

which would mean that z3 is basic at value 12.5, and the third column of the Jacobian has
elements of 1.0 and 2.0 in rows 1 and 4.

PRINT LEVEL O may be used to suppress most output, including page ejects between major
iterations. {Error messages will not be suppressed.) This print level should be used only for
production runs on well understood models. A high LOG FREQUENCY may also be appropriate for
such cases, e.g. 100 or 1000. (For convenience, LOG FREQUENCY O may be used as shorthand for
LOG FREQUENCY 99999.)

- PROBLEM NUMBER n (default n = 0)
For nonlinear problems, this assigns a value to the paramcter NPROB in the user subroutines

FUNOBJ, FUNCON and MATMOD.

3.3 SPECS File Definitions a5

PUNCH FILE ! (default f = 0)
If f > 0, the final solution obtained will be output to file f in the format described in section
5.2. For linear programs, this format is compatible with various commercial systcema,

RADIUS OF CONVERGENCE r (default » = 0.01)

This determines when the penalty parameter p will be reduced (if initialized to a positive value).
Both the nonlinear constraint violation (see ROWERR below) and the relative change in consecu-
tive Lagrange multipler estimates must be less than r at the start of a major iteration before

p is reduced or set to zero. Once p is zero, the sequence of major iterations should converge
quadratically to an optimum.

RANGES RANGEQO1L
This specifies the 8-character name of the range set to be selected from the MPS file.

1. RNGS is a valid alternative keyword.

2. If RANGES is not specified, or if the name is blank, the first range set in the MPS fle will be
selected,

3. If the MPS file contains one or more range sets but you do not want any of them to be used,
specify a dummy name such as RANGES = NONE.

RHS RHSIDE3
This specifies the 8-character name of the righthand side to be selected from the MPS file,

1. If RHS is not specified, or if the name is blank, the first righthand side in the MPS file will be
selected.

2. If the MPS file contains one or more righthand sides but you do not want any of them to be
used, specify a dummy name such as RHS = NONE.

ROWS m (default m == 100)
This must specify an over-estimate of the number of rows in the constraint matrix. It includes
the number of nonlinear constraints and the number of general linear constraints.

If m proves to be too small, MINOS continues in the manner described under COLUMNS.

ROW TOLERANCE e (default ¢, = 1.0E-8)
This specifies how accurately the nonlinear constraints should be satisfied. (Both “ROW" and

“TOLE” are significant on this data card.) The default value of 1.0E-8 is often appropriate, since
the MPS file contains data to about that aceuracy.

Let ROWERR be defined as the maximum component of the residual vector f{z}+ Ajy ~ by,
normalized by the size of the solution. Thus,

ROWERR = ||f(z) + A1y — b][eo / XNORM,

where XNORM is a measure of the size of the basic and superbasic variables. The solution (z,y)
is regarded as acceptably feasible if ROWERR < e,.

If some of the problem functions are known to be of low accuracy, a larger ROW TOLERANCE
may be appropriate.

35 3. The SPECS File

SAVE FREQUENCY k (default £ = 100)
If a NEW BASIS file has been specified, a basis map describing the curreni solution will be saved
on the appropriate file every k-th iteration. A BACKUP BASIS file will also be saved if specified.

SCALE NO (default)
SCALE QPTION 0

SCALE

SCALE YES

SCALE LINEAR VARIABLES

SCALE OPTION 1

SCALE NONLINEAR VARIABLES
SCALE ALL VARIABLES

SCALE OPTION 2
SCALE, PRINT
SCALE TOLERANCE t (default ¢ = 0.9)

Three scale options are available, with equivalent definitions as shown. The default is: No scaling.
Otherwise, the constraints and variables are scaled by an iterative procedure that attempts to make
the matrix coefficients as close as possible to 1 (see Fourer, 1982). This will sometimes improve
the performance of the solution procedures. SCALE OPTION 1 scales only the linear constraints
and variables.

If the constraints are linear, SCALE OPTION 1 scales all rows of the constraint matrix A, but
only the columns associated with linear variables. SCALE OPTION 2 performs an additional scaling
that may be helpful if the solution z is large; it takes into account columns of (A) that are
fixed or have positive lower bounds or negative upper bounds. SCALE OPTION 2 is suitable for
linear programs and for problems with nonlinear ob jectives.

If nonlinear constraints ate present, SCALE OPTION O or 1 should generally be tried at first.
SCALE OPTION 2 gives scales that depend on the initial Jacobian, and should therefore be used
only if a good starting point is provided (by the INITIAL bounds set or a basis file).

SCALE, PRINT causes the row-scales r(i) and column-scales ¢{j) to be printed. The scaled

matrix coefficients are @;; = a;;jc(j)/r(i), and the scaled bounds on the variables and slacks are

I; = j/e(j), Tj = ujfe(j), where c(j) = r(j - n) if j > n.

All forms except SCALE OPTION may specify a tolerance ¢ where 0.0 <t < 1.0 (for example:
SCALE, PRINT, TOLERANCE = 0.99). Raising t from 0.9 to 0.99 (say) will probably increase the
number of scaling passes through A. At most 10 passes will be made.

If a SCALE OPTION has not already been specified, SCALE PRINT or SCALE TOLERANCE both set
SCALE OPTION 1.

SOLUTION YES (default)

SOLUTION KO

SOLUTION IF OPTIMAL. INFEASIBLE, or UNBOUNDED

SOLUTION IF ERROR CONDITION

SOLUTION FILE 7 (default f = 0)

The firat four options determine whether the final solution obtained is to be output to the PRINT
ile. The FILE option operates independeatly; if f/ > 0, the final solution will be output to file f
(whether optimal or not).

3.3 SPECS File Definitions 37

1. For the YES, IF OPTIMAL, and IF ERROR options, floating-point numbers are printed in F18.5
format, and “infinite” bounds are denoted by the word NONE.

2. For the FILE oplion, all numbers are printed in 1PE18.8 format, including “infinite” bounds
which will have magnitude 1.000000E+20.

3. To see more significant digits in the printed solution, it will sometimes be useful to make f
refer to the system PRINT file.

START OBJECTIVE CHECK AT COLUMN k (default k = 1}
START CONSTRAINT CHECK AT COLUMN k (default & = 1)
STOP OBJECTIVE CHECK AT COLUMN! (default { = ni)
STOP CONSTRAINT CHECK AT COLUMN! (default { = nf)

These keywords may be used to abbreviate the verification of individual gradient elements
computed by subroutines FUNOBJ and FUNCON. For example:

1. I the first 100 objective gradients appeared to be correct in an earlier run, and if you have
just found a bug in FUNOBJ that ought to fix up the 101-th component, then you might as
well specify START OBJECTIVE CHECK AT COLUMN 101. Similarly for columns of the Jacobian

matrix.
2. 1f the first 100 variables occur nounlinearly in the constraints, and the remaining variables are

nonlinear only in the objective, then FUNOBJ must set the first 100 components of G() to
zero, but these hardly need to be verified. The above data card would again be appropriate.

These keywords are effective if VERIFY LEVEL > 0.

SUBSPACE TOLERANCE t (default t = 0.5)
This controls the extent to which optimization is confined to the current set of basic and superbasic
variables (Phase 4 iterations), before one or more nonbasic variables are added to the superbasic

set (Phase 3).
1. ¢ must be a real number in the range 0.0 < ¢t < 1.0. It is used as [ollows.

2. When a nonbasic variable z; is made superbasic, the resulting norm of the reduced-gradient
vector (for all superbasics) is recorded. Let this be 11Z27g0ll- (In fact, the norm will be 1d;1,
the size of the reduced gradient for z;.}

3. Subscquent Phase 4 iterations will continue at least until the norm of tho reduced-gradient
vector satisfies [[Z7gl] < ¢ X 112%goll. (l1Z7g|| is the size of the largest reduced-gradicnt
component among the superbasic variables.)

4. A smaller value of ¢ is likely to increase the total number of iterations, but may reduce the
number of basis changes. A larger value such as ¢ == 0.9 may sometimes lead to improved
overall cfficieacy, if the number of superbasic variables has to increase substantially between
the starting point and an optimal solution.

5. Other convergence tests on the change in the function being minimized and the change in
the variables may prolong Phase 4 iterations. This helps Lo make the overall performance
insensitive to larger values of £.

38 3. The SPECS File
SUMMARY FILE f (default f = 0)
SUMMARY FREQUENCY k (default k = 100)

If f > 0, a bricf log will be output to file f, including one line of information every k-th iteration.
[n an interactive environment, it is useful to direct this output to the terminal, to allow a run to
be rionitored on-line. (If something looks wrong, the run can be manually terminated.) Further
details are given in section 6.6.

SUPERBASICS LIMIT ' s (dEfa.ult s = HESSIAN DIMENSION, 30, or 1)
This specifies “how nonlinear” you expect a problem to be.

1. Normally, & need not be greater than n, + 1, where n, is the specified number of nonlinear
variables.

2. For many problems (that are not highly nonlinear), s may be considerably smaller than n,.
This will save storage if n; is very large.

3. This parameter also sets the HESSTAN DIMENSION, unless the latter is specified explicitly (and
conversely). If neither parameter is specified, both default to the value 30 {except il there
are no noalinear variables, in which case both default to 1).

SUPPRESS PARAMETERS

Normally MINOS prints the SPECS file as it is being read, and then prints a complete list of the
available keywords and their final values, The SUPPRESS PARAMETERS option tells MINOS not to
print the full list. (Both “SUP” and “PARA” are significant.)

UNBOUNDED OBJECTIVE VALUE Frax (default Frpax = 1.0E+20)

UNBOUNDED STEP SIZE Qmax (default Xmax = 1.03*10)

These parameters are intended to detect unboundedness in nonlinear problems. (They may or
may not achieve that purpose!) During a linesearch of the form

min F{z + ap),
o

if |F) exceeds Fpax Or @ exceeds om,y, iterations are terminated with the exit message PROBLEN
IS UNBOUNDED (OR BADLY SCALED).

1. If singularities are present, unboundedness in F(z) may be manifested by a floating-point
overflow (during the evaluation of F(z + ap)), before the test against Fin.y can be made.

2. Unboundedness in z is best avoided by placing finite upper and lower bounds on the variables.
(For convenicnce, this can be accomplished in the SPECS file; see the LOWER and UPPER BOUND
parameters.)

UPPER BOUND u (default u = 1.0E+20)

Before the BOUNDS section of the MPS file is read, all structural variables are given the default
upper bound . (Individual variables may subsequently have their upper bound altered by the
BOUNDS seciion in the MPS file.)

3.3 SPECS File Deflnitions 39
VERIFY LEVEL { (default { =0)
VERIFY NO
VERIFY LEVEL 0
VERIFY OBJECTIVE GRADIENTS
VERIFY LEVEL 1
VERIFY CONSTRAINT GRADIENTS
VERIFY LEVEL 2
VERIFY
VERIFY YES
VERIFY GRADIENTS
VERIFY LEVEL 3

These keywords refer to finite-difference checks on the gradient elements computed by the user
subroutines FUNOBJ and FUNCON. It is possible to specify VERIFY LEVELs 0-3 in several ways,
as indicated above, For example, the nonlincar objective gradients (if any) will be verified if
either VERIFY OBJECTIVE or VERIFY LEVEL 1 is specified. Similarly, both the objective and
the constraint gradients will be verified if VERIFY YES or VERIFY LEVEL 3 or just VERIFY is

specified.

If 0 < [< 3, gradients will be verified at the starting point. If { = 0, only a “cheap” test
will be performed, requiring 3 calls to FUNOBJ or 2 calls to FUNCON. If 1 <! < 3, a more reliable
check will be made on individual gradient components, within the ranges specified by the START
and STOP keywords. A key of the form “0K” or “BAD?” indicates whether or not each component
appears to be correct.

Gradient checking occurs before the problem is scaled and before the first basis is factorized.
(Hence, it occurs before the basic variables are reset to satisfy Az + Is=0)

EMERGENCY gradient checking (at the end of an abortive run) is no longer performed.

1. VERIFY LEVEL 3 should be specified whenever a new function routine is being developed.
2. Missing gradients are not checked; i.e., they result in no overhead.

3. The default action is to perform a cheap check on the gradients at the first feasible point.
Even on debugged function routines, the message “GRADIENTS SEEM TO BE OK” will provide
certain comfort at nominal cxpense.

4. If necessary, checking can be suppressed by specilying VERIFY LEVEL -ti.

40 3. The SPECS File

WEIGHT ON LIKEAR OBJECTIVE w (default w = 0.0)

This keyword invokes the so-called composite objective technique, i the first solution obtained is
infeasible, and if linear terms for the objective function arc specified in the MPS file. While trying
to reduce the sum of infeasibilities, the method also attempts to optimnize the linear objective.

1. At each infeasible iteration, the objective function is defined to be
minimize gw{c’z) + (sum of infeasibilities),

where ¢ = 1 for MINIMIZE, o = —1 for MAXIMIZE, and c is the linear objective row.

2. If an “optimal™ solution is reached while still infeasible, w is reduced by a factor of 10. This
helps to allow for the possibility that the initial w is too large. It also provides dynamic
allowance for the fact the sum of infeasibilities is tending towards zero.

3. The effect of w is disabled after 5 such reductions, or if a feasible solution is obtained.

WORKSPACE (USER) maxy {default maxw = 0)
WORKSPACE (TOTAL) maxz (default maxz = NWCORE)
These keywords define the limits of the region of storage that MINOS may use in solving the
current problem. The main work array is declared in the main program, along with its length,
by statements of the form
DOUBLE PRECISION Z(250¢0)
DATA NWCORE/25000/
where the actual length of Z must be specified at compile time. The values specified by the
WORKSPACE keywords are stored in
CUMMUN /MZMAPZ/ MAXV, MAXZ
and workspace may be shared according to the following rules:
1. 2€1) through Z (MAXW) is available to the user.
2. Z(MAXW+1) through Z(MAXZ) is available to MINOS, and should not be altered by the user.
3. Z(MAXZ+1) through Z(NWCORE) is unused (ot available to the user).

The arrays LEN and LOC are not used by MINOS.

The WORKSPACE parameters are most useful on machines with a virtual (paged) store. Some
systems will allow NWCORE to be set to a very large number (say 500000) with no overhead in
saving the resulting object code. At run time, when various problems of different size are to be
solved, it may be sensible to confine MINOS to a portion of Z to reduce paging activity slightly.
(However, MINOS accesses storage contiguously wherever possible, so the benefit may be slight.
In general it is far better to have too much storage than not enough.)

4.1 The NAME Card 41

4. THE MPS FILE

An MPS file is required for all problems to specify names for the variables and constraints, and to
define the constraints themselves. In contrast to the relatively free format allowed in the SPECS
file, a very fixed format must be used for the MPS file. (This means that each item of data must
appear in specific columns.)

Various “header cards” divide the MPS file into several sections as follows:

NAME
ROWS

CéLUle

RHS

R;\NGES (optional)
Bl;lUNDS (optional)

ENDATA

Each header card must begin in column 1. The intervening card images {indicated by “. above)

all have the following data format:

Columns 2-3 5-12 15-22 25-36 40-47 50-61
Contents Key Namel Namel Valuel Name2 Value2

In addition, “comment” cards are allowed; these have an asterisk “*” in column 1 and any
characters in columns 2-22.

MPS format has become the industry standard. Files of this kind are recognized by all
commercial mathematical programming systems {including MPS/360, MPSX, MPSX/370 and
MPS 1T on IBM systems; APEX III and IV on CDC machines; FMPS on Univac systems; TEMPO
on Burroughs systems). They may be created by hand, by your own special-purpose program, or
by various commercial “matrix generators”, such as GAMMA, MAGEN and OMNL

Beware that variations are inevitable in almost any “standard” format. Some restrictions in
the format accepted by MINOS are listed later. Some cxtensions are also needed [or nonlinear

problems.

4.1 The NAME Card

NAME MODEL0O1 {for example)

This card contains the word NAME in columns 1-4, and a name for the problem in columns 15-22.
(The name may be from 1 to 8 charactiers of any kind, or it may be blank.) The name is used to
label the solution output, and it appears on the first card of each basis file.

The NAME card is normally the first card in the MPS file, but it may be preceded or followed

by comment cards.

41 4. The MPS File

4.2 The ROWS Section

ROWS
E FUNO1L
G FUNO2 (for example)
L CAPITAL1
N COST

The general constraints are commonly referred to as rows. The ROWS section coatains one card
for each constraint (i.e., for each row). Key defines what type the constraint is, and Name0 gives
the constraint an 8-character name. The various row-types are as follows:

Key Row-type

E =

G >

L <
N Objective
N Free

(The 1-character Key may be in column 2 or column 3.)

Row-types E, G and L are easily understood in terms of a linear function aTz and a right-hand
side §. They would be used to specily constraints of the form

aTz =4, a’z> 8 and a’z <8

respectively. (Nonzero clements of the row-vector a will appear in appropriate parts of the
COLUMNS section, and if 3 is nonzero it will appear in the RHS section.)

Row-type N stands for “Not binding”, also known as “Free”. It is used to define the objective
row, and also to prevent a constraint from actuaily being a constraint. {Note that ~o0 < a7z <
+00 is not really a constraint at all. Type N rows are implemented by giving them infinite bounds
of this kind.}

The objective row is a free row that specifies the vectors ¢ and d in the objective function

F(z) + c¢Tz + d7y. it is taken to be the first free row, unless some other free row is specified by

the OBJECTIVE keyword in the SPECS file.

The ROWS section need not contair any free rows if ¢ = d = 0. If there are some nonliriear
objective variables, the objective function will then be F(z) as defined by subroutine FUNOBJ.
Otherwise, no objective function exists and MINOS will terminate at the first point that satisfics
the constraints.

if the ROWS section does contain lree rows but none of them is intended to be an objective
row, then some dummy name such as OBJECTIVE = NONE should be specified in the SPECS file
to prevent the first (ree row from being sclected. (If the objective lunction is #(z) with no lincar
terms, GBJECTIVE = FUNOBJ would be a mnemonic reminder.)

Row-names for Nonlinear Constraints

The names of nonlinear constraints must be listed first in the ROWS section, and their order
must be consistent with the computation of the array F(*) in subroutine FUNCON.

In particular, the objective row (il any) must appear alter the list of nonlincar row names.
For simplicity we suggest that potential objective rows be placed last:

!

4.3 The COLUMNS Section 43
ROWS
G FUNO1 nonlinear constraints first
G FUNO2
E LINOL now linear constraints
E LINO2
N COSTOt objective rows last

=

cosTO2

4.8 The COLUMNS Section

1 6..... 12 16....22 26........ 36 40....47 B0........ 81 (felda)
COLUMNS
Xo1 FUNOS 1.0 ROWOQ9 -3.0
X01 ROWOS 2.5 ROW12 1.123458 (example)
X01 ROWO3 -11.111141
Xo02 FUNO2 1.0
X02 COST01 5.0

For each variable z, (say), the COLUMNS section defines a name for z; and lists the nonzero
entries a;,; in the corresponding column of the constraint matrix. The nonzeros for the first
column must be grouped together before those for the second column, and so on. If a column has
several nonzeros, it does not matter what order they appear in (as long as they all appear before
the next column). -

In general, Key is blank (except for commeants), Name0 is the column name, and Namel,
Valuel give a row name and value for some coefficient in that column. [f there is another row
name and value for the same column, they may appear as Name2, Value2 on the same card, or
they may be on the next card.

If either Namel or Name?2 is blank, the corresponding value is ignored.

Values are read by MINOS using Fortran format E12.0. This allows values to be entered
in several forms; for example, 1.2345678, 1.2345878E+0, 123.45878E-2 and 12345678E-07 all
represent the same number. It is usually best to include an explicit decimal point.

Beware that spaces within the value fields are the same as 0's (on most computer systems).
In particular, this means that il an exponent like E-2 appears then it must be right-justified in

the value field. For example, the two values
1.23E-02

1.23E-2
are not the same i the decimal point is in column 30 in both cases. The second value is actually

1.23E-20.

In the example above, the variable called X01 has 5 nonzero cocfficients in the constraints
named FUNOS, ROWO9, ROWOS, ROW12 and ROWO3. The row names and values may be in an arbitrary
order, but they must all appear before the entries for column X02.

There is no need to specify columns for the slack variables; they are incorporated implicitly.

44 4. The MPS File

Nonlinear Variables

Nonlincar variables must appear first in the COLUMNS section, ordered in a manner that is
consistent with the array X(#) in the user subroutines FUNOBJ and/or FUNCON. In the example

minimize (z+y +2)° + 3z + 5w
subject to z? + + z =2
zt + ot +w=4
2z + 4y >0

220, w>0

we have three nonlinear objective variables (z, ¥, z), two nonlinear Jacobian variables (z, y), one
linear variable w, two nonlinear constraints, one linear constraint, and some simple bounds. The
nonlinear constraints and variables should always be ordered in a similar way, at the top left-hand
corner of the constraint matrix. The latter is therefore of the form

Je A
A=(* 1)
Ay Ay

where Jx is the Jacobian matrix. The variables associated with Jix and Az must appear first in
the COLUMNS section, and their order must be consistent with the array X(#) in subroutine
FUNCON. Similarly, entries belonging to Ji must appear in an order that is consistent with the
array G(») in subroutine FUNCON.

For convenience, let the first ny columns of the constraint matrix be

(J,.)_(jl n ...:'..1)
Ag Gy G2 +.-0p, !

where j; is the first column of Ji and @, is the first column of Aj. The cocfficients of 7y and
a; must appear before the cocflicients of js and a (and so on for all columns). Usually, those
belonging to j; will appear before any in ay, but this is not essential. (I certain linear constraints
are made nonlinear at a later date, this means that entries in the COLUMNS section will not
have to be reordered. However, the corresponding row names will need be moved towards Lhe top
of the ROWS section,)

It JACOBIAN = DENSE, the elements of Ji need not be specified in the MPS (le. 1 JACGBIAN
= SPARSE, all nonzero elements of J, must be specified. Any variable coeflicients should be given
a dummy value, such as zero. These dummy entries identify the location of the elements; their
actual values will be computed later by subroutine FUNCON or by finite differences.

If all constraint gradients are known (DERIVATIVE LEVEL = 2 or 3), any Jacobian elements
that are constant may be given their correct values in the COLUMNS section, and then they need
not be reset by subroutine FUNCON. This includes values that are identically sero-—--such clements
do not have to be specified anywhere (in the MI’S file or in FUNCON). n other words, Jacobian
clements are assumed to be zero uniess specified otherwise.

Note that X(*) need not have the same dimcnsion in subroutines FUNOBJ and FUNCON (i.e.,
the parameter N may differ), in the event that dilferent numbers arc specified by the NONLINEAR
OBJECTIVE and NONLINEAR JACOBIAN keywords. llowever the shorter set of nonlinear variables
must oceur at the beginning of the longer set, and the ordering of variables in the COLUMNS
section must match both sets.

A noalinear objcctive function will often involve variables that oceur onlty lincarly in the
constraints. In such cases we recornmend that the objective variables be placed after the Jacobian
variables in the COLUMNS section, since the Jacobian will Lhen be as small as possibie. (St the
variable z in the example above.)

4.5 The RANGES Section 45
4.4 The RHS Section
L 8..... 12 16....22 26........ 38 40....47 50........ 81
RHS
RHSO1 FUNO1 1.0 ROWO9 -3.0
RHSO1 ROWOS 2.8 ROW12 1.123466
RHSO1 ROWO3 -11.111111
RHS02 FUNO2 1.0
RES02 FUNO4 5.0

This section specifies the elements of by and b in (2)~(3). Together these vectors comprise what
is called the right-hand side. Only the nonzero coefficients need to be specified. They may appear
in any order. The format is exactly the same as in the COLUMNS section, with Name@ giving a

name to the right-hand side.
If b, = 0 and b = 0, the RHS header card must appear as usual, but no rhs coefficients need

follow.
The RHS section may contain more than one right-hand side. The first one will be used

unless some other name is specified in the SPECS file.

4.5 The RANGES Saction (Optional)
i B.vuu 12 15....22 25........386 40....47 50....... .81

E FUNO2
G CAPITALL
L CAPITAL2

COLUMNS
RHS

RHS01 FUNO1 4.0 FUNO2 4.0
RANGES

RANGEOT FUNO1 1.0 FUNQO2 -1.
RANGEO1 CAPITAL1 1.0 CAPITALZ2

Ranges are used for constraints of the form

-
o0

[<aTz <y,

where both [and u are finite. The range of the constraint is r = u — I. Either [or u is specified
in the RHS section (as b say), and 7 is defined in the RANGES section. The resulting { and u

depend on the row-type of the constraint and the sign of r as follows:

Row-type Sign of r Lower limit, { Upper limit, u

E + b b+l
E - b—|r| b
G + o - b b+ |l
L +or — b—|r| b

46 4. The MPS File

The format is exactly the same as in the COLUMNS section, with Name0 giving a name to
the range set. The constraints listed above will have the following limits:

40 < FUNO1 < 5.0,
3.0 < FUNoz < 4.0,
4.0 < CAPITALL < 5.0,
3.0 < CAPITAL2 < 4.0.

The RANGES section may contain more than one set of ranges. The first set will be used
unless some other name is specified in the SPECS file.

4.8 The BOUNDS Section (Optional)

1 b5..... 12 15....22 26........ 36
BOUNDS

UP BOUNDOT XO1 4.0

UP BOUNDQL X02 4.0

LO BOUNDOL XO04 -1.0

UP BOUNDO1 XO4 4.0

FR BOUNDO1 X08
UP BOUNDOT X08 4.0

The default bounds on all variables z; (excluding slacks) are 0 < z; < oo. If necessary, the
default values 0 and co can be changed in the SPECS file to ! € z; < u by the LOWER and UPPER
keywords respectively.

If uniform bounds of this kind are not suitable, any number of alternative values may be
specificd in the BOUNDS section. As usual, several sets of bounds may be given, and the first
sot will be used unless some other name is specified in the SUECS file.

In this section, Key gives the type of bound required, Namc@ is the name of the bound set,
and Namel and Valuel are the column name and bound vaiue. (Name2 and Valuc2 are ignored.)

Let { and u be the default bounds just mentioned, and let z and b be the column and value
specified. The various bound-types allowed are as {ollows:

Key Bound-type Resulting bounds
Lo Lower bound b <z< u
UpP Upper bound ! <z< b
FX Fixed variable b <z< b (ie,z=0)
FR Free variable -c0< &+
MI Minus infinity —-o<zrs u
PL Plus infinity | €£z<+»
The effect of the examples above is to give the following bounds:
I <%01<4.0
| <x02<4.0
—-1.0< X04 < 4.0

—co £ X08 < 4.0

Note that types FR, MI, or PL should always be used to specify “infinite” bounds; they imply
values of +102°, which are treated specially at certain times.

4.6 The BOUNDS Section 47

Nonlinear Problems

It is often essential to use bounds to avoid singularities in the nonlincar functions. For example
if an objective function involves log z;, a bound of the form z; > 10™* may be necessary to avoid'
evaluating the objective [unction at zero or negative valucs of z;. (Subroutine FUNOBJ is usually
not called until a feasibie point has been found. Note that z is regarded as feasible if it satisfies
its bounds to within the FEASIBILITY TOLERANCE . Thus, it would not be safe to specily the
bound z; > 108 if ¢ retained its default value t = 10-%.)

Beware that subroutine FUNCON sometimes will be called before the nonlinear variabies satis{y
their bounds. If this causes difficulty, one approach is to specify [easible values for the offending

variables in the INITIAL bounds set described next.

The INITIAL Bounds Set

In general, variables will initially have the value zero, if zero lies between the associated upper
and lower bounds. Otherwise, the initial value will be the bound closest to zero.

The name INITIAL is reserved for a special bounds set that may be used to assign other initial
values. The INITIAL bounds set must appear after any normal bound sets (if any); a warning is
given if it is the first set encountered after the BOUNDS card.

The INITIAL bounds set also influences CRASH during construction of an initial basis. Broadly
speaking, CRASH favors certain variables, ignores certain others, and treats the remainder as
neutral. The following example illustrates the various cases:

FR INITIAL X1 1.0
FX INITIAL X2 2.0
LO INITIAL X3
UP INITIAL X4
MI INITIAL XS 5.0
PL INITIAL X6 6.0

1. During gradient checking and evaluation of the initial Jacobian, the value of X1 will be 1.0.
X1 will then be favored by CRASH for inclusion in the initial basis. (Free rows and columns

will also be favored.)

9. %2 will initially be superbasic at the value 2.0. (If the number of FX IRITIALs has already
reached the SUPERBASICS LIMIT, X2 will initially be nonbasic at the same value 2.0.)

3. X3 and X4 will initially be nonbasic at their respective lower and upper bounds (or at value
zero if both bounds are infinite).

4. XS and X6 will initially be nonbasic at the specified values 5.0 and 6.0. '

The last five bound types (FX, LQ, UP, MI, PL) prevent the associated variables from being included
in the initial basis.)

FR INITIAL or FX INITIAL should be used if good values are known for variables that are
likely to lie between their bounds in an optimal solution. (Type FRis preferred if many such values
are to be specified; however, the values may change when the basic variables are reset to satisiy
Az + Is = 0. Type FX guarantees the specified starting value, but should not be used excessively
if the optimal solution is likely to be close to a vertex.) :

L0 INITIAL or UP INITIAL should be used for variables that are likely to be on their lower

or upper bound at a solution.
MI INITIAL and PL INITIAL are included for completeness.

48

4. The MPS File

As with normal bound sets, variables may be listed in any order. (For each entry a linear

scarch is made through the column names, starting at the name on the previous entry. Thus, for
large problems it helps to follow the order of the variables in the COLUMNS section, at least to
some extent.)

4.7

The INITIAL bounds set is ignored if a basis file is supplied.

Comment Cards

Any card in the MPS file may contain an asterisk “*” in column 1 and arbitrary data in columns

2-6

1. Such cards will be treated as comments. They will appear in the printer listing but will

otherwise be ignored.

4.8
L

Restrictions and Extensions in MPS Format

Blanks are significant in the 8-character name fields. We recommend that all names be left-
justified with no imbedded blanks. In particular, names referred to in the. SPECS fite must
be left-justified in the MPS file; for example, OBJECTIVE = COSTO2 specifies an 3-character
name whose last two characters are blank.

Comments ideally should use only columns 1-61 as noted above.

. Scale factors cannot be entered in the ROWS section.

It does not matter il there is no row of type N.

. There must be at least one row in the ROWS section, even for problems with no general

constraints. (It may have row-type N.)

8. Nonlinear constraints must appear before linear constraints in the ROWS section.
7. Markers such as INTORG and INTEND are not recognized in the COLUMNS section.
8. Numerical values may be entered in E or I' format. Spaces within the 12-character fields are

12

treated as if they were 0's.

. Nonlinear variables must appear before linear variables in the COLUMNS section.
10.
11,

If RANGES and BOUNDS sections are both present, the RANGES scction must appear firsi.

In the BOUNDS section, if an UP entry specifics a zero upper bound, the corresponding lower
bound ‘s not affected. (Beware—in some MP systems, the lower bound is converted to —o0.)

. The bounds name INITIAL has a special meaning.

5.1 NEW and OLD BASIS Files 49

5. BASIS Files

For non-trivial problems, it is advisable to save a BASIS file at the end of a run, in order to
restart the run if necessary, or to provide a good starting point for some closely related problem.

Three formats are available for saving basis descriptions. They are invoked by SPECS eards
of the following form:

NEW BASIS FILE 10
BACKUP FILE 11 (same as NEW BASIS but on a different file)
PUNCH FILE 20
DUMP FILE 30

The file numbers may be whatever is convenient, or zero for files that are not wanted.
NEW BASIS and BACKUP files are saved every k-th iteration, in that order, where k is the

SAVE FREQUENCY.
NEW, PUNCH and DUMP files are saved at the end of a run, in that order. They may
be re-loaded at the start of a subsequent run by specilying SPECS cards of the following form

respectively:

OLD BASIS FILE 10
INSERT FILE 20
LOAD FILE 30

Only one such file will actually be loaded. If more than one positive file number is specified, the
order of precedence is as shown. If no BASIS files are specified, one of the CRASH OPTIQNs takes
effect.

Figures 5.1-5.3 illustrate the data formats used for BASIS files. 80-character fixed-length
records are suitable in ail cases. {36-character records would be adequate for PUNCH and DUMP
files.) The files shown correspond to the optimal solution lor the economic-growth modeli MANNE,
described in section 8.4. Sclected column numbers are included to define significant data fields.
The problem has 10 nonlinear constraints, 10 linear constraints, and 30 variables.

5.1 NEW and OLD BASIS Files

We sometimes call these files basis maps. They contain the most compact representation of the
state of each variable. They are intended for restarting the solution of a problem at a point
that was reached by an earlier run on the same probiem or a refated probiem with the same
dimensions. (Perhaps the ITERATIONS LIMIT was previously too small, or some other objective

row is to be used.}
As illustrated in Figure 5.1, the following information is recorded in a NEW BASIS file.

1. A card containing the problem name, the iteration number when the file was created, the
status of the solution (OPTIMAL SOLN, INFEASIBLE, UNBOUNDED, EXCESS ITNS, ERROR CONDN,
or PROCEEDING), the number of infeasibilities, and the current objective value [or the sum of

infeasibilities).
2. A card containing the OBJECTIVE, RHS, RANGES and BOUNDS names, M == the number ol rows
in the constraint matrix, N = the number of columns in the constraiat matrix, and SB = the
. number of superbasic variables. :

50

5. BASIS Files

3. A set of (N+ M —1)/80 + 1 cards indicating the state of the N column variables and the M

slack variables in that order. One character HS{j) is recorded for each j = 1,2,... N+ M as
follows, written with FORMAT (80I1).

HS(j) State of the j-th variable
0 Nonbasic at lower bound
1 Nonbasie at upper bound
2 Superbasic
3 Basie

If variable j is fixed (lower bound = upper bound), then HS(;j) may be 0 or 1. The same
is true if variable j is-free (infinite bounds) and still nonbasic, although free variables will

almost always be basie.

. A set of cards of the form

7 Ty
written with FORMAT (I8, 1PE24.14) and terminated by an entry with j = 0, where j denotes
the j-th variable and z, is a real value. The j-th variable is either the j-th column or the
(f — N)-th slack, if 5 > N. Typically, H8(j) = 2 (superbasic). When noniinear constraints are
present, this list of superbasic variables is extended to include all basic nonlinear variables.
The Jacobian matrix can then be reconstructed exactly for a restart.

Loading a NEW BASIS file

A file that has been saved as an OLD BASIS fle may be input at the beginning of a later run as
a NEW BASIS file. The following notes are relevant:

1. The first card is input and printed but otherwise not used.
. The values labelled M and N on the second card must agree with those for the MPS file that

has just been rcad. The valuc labelled SB is input and printed but is not used.

. The next set of cards must contain exactly M values HS(j) = 3, denoting the basic variables.
. The list of 7 and z, values must include an entry for every variable whose state is H8(j) = 2

(the superbasic variables).

. Further j and z; values may be included, in any order.
8. For any j in this list, if HS8(j) = 3 (basic), the value z; will be recorded for nonlincar

variables, but the variable will remain basic.

. If HS(j) £ 3, variable j will be initialized at the value z; and its state will be resct to 2

(superbasic). If the number of superbasic variabies has already reached the SUPERBASICS
LIMIT, then variable j will be made nonbasic at the bound nearest to z; (or at zero il it is a

free variable).

5.1 NEW and OLD BASIS Files 51
| s 18.0ess 23 2% cianine 40 43....50 | ¥ - sssvanns a0
MAMNE 1 I™ i1 OPTIMAL SOLN NINF 0 08J -2.6470097657643D 00
CBJ=FUNOSJ RHS=RHS RNGERANGE 1 BNO TBOUND 1 M= <3 N= 30 582 7

03222222230333333333333333333111111111110000000000
3 3.21443030624617D 00
4 3.304004540903450 00
L 3.395219587011400 00
6 3.4487878208733720 00
7 3.581722961684240 00
8 3.676628591145790 00
9 3.771582587441020 00
! 3.050000000000000 ¢0
2 3.126650351567820 00
10 3.866666666666670 00
11 9.500006000000000-01
12 9.684618063459247D~0)
13 9.978010109641690-01
14 .1.028200569133170 00
18 1.059670152206730 060
16 1.092272226137000 00
17 1.126076354918100 00
18 1.161163958088100 00
19 1.197628149454330 €0
29 1.2139430802645590 00

Figure 5.1. Format of NEW acd OLD BASIS files

Warning: This format is aot quite compatible with MINOS 4.0 in the following respects.

1. On the second card, M is the number of constraints (m, as before) but N is now the number
of variables excluding slacks (i.e., n, the number of columns in the MPS file plus the number
of phantom columns, il any). Previously, N had the value n + 1 4+ m; this included 1 for the
right-hand side and m for the slacks.

2, The basis map starting at card 3 does not contain an entry for the right-hand side, which
was previously in position n + 1. The length of the map is now n + m, not n + 1+ m.

3. In the list of (j z;) entries, the values of j referring to slacks arc now one less than before.
(These are entries for which j > n.)

A basis map from MINOS 4.0 can thercfoce be converted to the present format with reasonable
ease. PUNCH and DUMP files from MINOS 4.0 should be acceptable as INSERT and LOAD files
without change.

52 5. BASIS Files

5.2 PUNCH and INSERT Files

These files provide compatibility with commercial mathematical programming systems. The
PUNCH file from a previous run may be used as an INSERT file for a later run on the same
problem. It may also be possible to modify the INSERT file and/or problem and still obtain a
useful advanced basis.

The standard MPS format has been slightly generalized to allow the saving and reloading of
nonbasic solutions. It is illustrated in Figure 5.2. Apart from the first and last card, each entry

has the following form:

Columns 2-3 5-12 15-22 25-38
Contents Key Namel Name2 Value

The various keys are best defined in terms of the action they cause on input. It is assumed that
the basis is initially set to be the full set of slack variables, and that column variables are initially

at their smallest bound in absolute magnitude.

Key Action to be taken during INSERT

Make variable Namel basic and siack Name2 nonbasic at its lower bound.
Make variable Name! basic and slack Name2 nonbasic at its upper bound.
Make variable Namel nonbasic at its lower bound.

Make variable Namel nonbasic at its upper bound.

Make variable Namel superbasic at the specified Value.

@sFad

Note that Namel may be a column name or a row name, but {on XL and XU cards) Name2 must
be a row name. In all cases, row names indicate the associated slack variable, and if Namel is
a nonlinear variable then its Value is recorded for possible use in defining the initial Jacobian

matrix.
The key SB is an addition to the standard MPS format to allow for nonbasic solutions.

Notes on PUNCH Data

1. Variables are output in natural order. For example, on the first XL or XU card, Namel will be.
the first basic column and Name2 will be the first row whose slack is not basic. (The slack

could be nonbasic or superbasic.)
9. LL cards are not output for nonbasic variables if the corresponding lower bound value is zero.

3. Superbasic slacks are output last.
4. PUNCH and INSERT files deal with the status and values of slack variables. This is in
contrast to the printed solution and the SOLUTION file, which deal with rows.

Notes on INSERT Data

1. Before an INSERT file is read, column variables are made nonbasic at their smallest bound
in absolute magnitude, and the slack variables are made basic.

2, Proferably an INSERT file should be an unmodified PUNCIH file from an earlicr run on the
same problem. If some rows have been added to the problem, the INSERT file need not be

altered. (The slacks for the new rows will be in the basis.)

5.3 DUMP and LOAD Files 53

3. Entries will be ignored if Namel is aiready basic or superbasic. XL and XU cards will be
ignored if Name2 is not basic.

4. SB cards may be added before the ENDATA card, to specily additional superbasic columns or
slacks.

5. An SB card will not alter the status of Namel if the SUPERBASICS LIMIT has been reached.
However, the associated Value will be retained if Namel is a Jacobian variable.

5.3 DUMP and LOAD Files

These files are similar to PUNCH and INSERT files, but they record solution information in
a manner that is more direct and more easily modified. In particular, no distinction is made
between columns and slacks. Apart (rom the first and last card, each entry has the form

Columns 2-3 5-12 25-36
Contents Key Name Value

as illustrated in Figure 5.3. The keys LL, UL, BS and SB mean Lower Limit, Upper Limit, Basic
and Superbasic respectively. ' '

Notes on DUMP Data

1. A card is output for every variable, columns foilowed by slacks.
9. Nonbasic free variables will be output with either LL or UL keys and with Value zero.

Notes on LOAD Data

1. Before a LOAD file is read, all columns and slacks are made nonbasic at their smallest bound
in absolute magnitude. The basis is initially empty. '

2. Each LL, UL or BS card causes Name to adopt the specified status. The associated Value will
be retained if Name is a Jacobian variable.

3. An SB card causes Name to become superbasic at the specified Value.

4. An entry will be ignored if Name is already basic or superbasic. (Thus, only the first BS or
§B card takes effect for any given Name.)

5. An SB card will not alter the status of Name if the SUPERBASICS LIMIT has been reached,
but the associated Value will be retained if Name is a Jacobian variable.

8. {Partial basis) Let M be the number of rows in the problem. [f fewer than M variables are
specified to be basic, a tentative basis list will be constructed by adding the requisite number
of slacks, starting from the first row and taking those that were not previously specified to
be basic or superbasic. (If the resulting basis proves Lo be singular, the basis factorization
routine will replace a number of basic variables by other slacks.) The starting point obtained

in this way will not necessarily be “good”.

7. (Too many basics) If M variables have alrcady been specified as basie, any further BS keys will
be treated as though they were SB. This feature may be useful for combining solutions to

smaller problems.

5. BASIS Files

] 5.....12 15....22 1 J 1 B.....12 15....22 2%........3
NHAME MAHMNE1 D PUNCH/ INSERT HAME MANNETS DUMP/LOAD
LL KAPOOY 3.0%0000 00 LL KAPOOY 3.0%3000 00
XU KAPOO2 HONSO1 3.126650 00 23S XAPOO2 3.1264650 00
S8 KAPOGY 3.214430 00 S8 KAPOO3 3.216430 00
S8 KAPOOA 3.304000 00 S8 KAPOOS 3.304000 00
5 KAPOOUS 3.39%5220 00 S8 KAPOOS 3.39%220 Q¢
S8 KAPOOS 3.487880 00 S KAPOOS 3.44768D0 00
S8 KAPOO? 1.581720 00 38 XAPOO? 3.581720 00
S§ KAPOOS 3.670430 00 3B RAPIGE 3.476470 00
B KAPOOY 3.771580 08 B KAPOOY 3.771580 09
) KAPO1O HONQO2 3.8644670 00 8% KAPO1D 1.844670 00
LL CONOOt 9.500000-01 LL CONOOY 9.500000-0?
) CoON0oL MHOMGO3 9,.684180-01 23 CONGOR 9.684180-01
XU CONOO3 MONGOS 9.978010-01 CONDS3 9.978010-01
YU CONOOA MONOCS 1.028200 00 B8 CONGOA 1.028200 GO
¥ CONDOS MONOOS 1.05970 00 83 CONGOS 1.05%70 %0
¥ CONOOd MONGST 1.092270 09 B8 CONGOL 1.092270 00
XU Cowoe? noM008 1.126080 0O a3 cCONGR? t.126000 00
Xy CONOOB MONCO S 1.16116D 08 88 CONOOS 1.18116D.00
¥y CONOO9 MONOYO 1.197630 00 BS CONOOY 1.197630 00
XL CONG1® CAPQOZ 1.213940 00 58 CONG10 1.21390 00
XL INVOR CAPOG) 7.665000-02 38 INVOSY 7.64504D-02
XL INVOO2 CAPOOS ..770‘_ﬂ°08 3% Dwoet 8.778000-02
XL DiVOe3 CAPOGS 8.957420-02 58 TV} 5.957420-~02
XL INVOOA CAPOOG 9.121540-02 83 VO 9.12154D-02
XL INVOOS CAPOO? 9.26582D-02 83 INVOOS 9.245820-02
XL INVOOs CAPGOS 9. 384400-02 83 INVOOH 9.38448D-02
XL INVOO? CAPOOY 9.470540-02 mvos? 2.470560-02
XL INVOOS CAPO10 9.513400-02 83 INVOSS 9.515400-02
Xt INVOCY TERMINY 9.500410-02 BS INVOOY 9.508410-02
UL INVO1S 1.160000-01 UL INvelQ 1.160000-~01
ENDATA UL MONGSY 0.000000-01
UL HONSOR 9.000000-01
UL MONOO3 9.000060-01
Uut mm:; 0.00000D-01
g 9.900000-01
Figure §.3. Format of PUNCH and INSERT files UL HONOOS 0. 000000-01
UL MON0O? 0.000000~-01
UL MONGOS 0.000000-01
UL MONOOY 0.000090-01
UL MONO1D 0.000000-01
LL CAPOO2 0.00000D0-01
LL CAPOO3 0.000000-01
LL CAPOOA 0.000000-01
LL CAPOOS 0.000000-01
LL CAPOOS g9.000000-01
LL CAPOO? 0.000000-01
LL CAPOGS 0.000000~01
LL CAPOOY 9.000000-01
LL, CAPOYO 0.000000-01
LL TERMINY 0.000000-~-01

ENDATA

Figure 5.3. Format of DUMP and LOAD files

5.4 Restarting Modified Problems 55

5.4 Restarting Modifled Problems

Sections 5.1-5.3 document three distinct starting methods (OLD BASIS, INSERT and LOAD
files), which may be preferable to any of the cold start (CRASH) options. The best choice depends
on the extent to which a problem has been modified, and whether it is more convenient to specify
variables by number or by name, The following notes offer some rules of thumb.

Protection

In general there is no danger of specifying infinite values. For example, if a variable is specified
to be nonbasic at an upper bound that happens to be +00, it will be made nonbasic at its lower
bound. Conversely if its lower bound is —oo. If the variable is free {both bounds infinite), it will
be made nonbasic at value zero. No warning message will be issued.

Default Status

If the status of a variable is not explicitly given, it will initially be nonbasic at the bound that is
smallest in absolute magnitude. Ties are broken in favor of lower bounds, and f{ree variables will
again take the value zero.

Restarting with Different Bounds

Suppose that a problem is to be restarted after the bounds on some variable X have been altered.
Any of the basis files may be used, but the starting point obtained depends on the status of X at
the time the basis is saved.

If X is basic or superbasic, the starting point will be the same as before (all other things being
equal). The value of X may lie outside its new set of bounds, but there will be minimal loss of
feasibility or optimality for the problem as a whole.

If X was previously fixed, it is likely to be nonbasic at its Jower bound {which happens to be
the same as its upper bound). Increasing its upper bound will not affect the solution.

In contrast, if X is nonbasic at its upper bound and if that bound is altered, the starting values
for an arbitrary number of basic variables could be changed {since they will be recomputed from
the nonbasic and superbasic variables). This may not be of great consequence, but sometimes it
may be worthwhile to retain the old solution precisely. To do this, one must make X superbasic
at the original bound value.

For example, if X is nonbasic at an upper bound of 5.0 (which has now been changed), one
should insert a card of the form

§ 5.0
near the end of an OLD BASIS file, or the card
SB X 5.0

near the cnd of an INSERT or LOAD file. Note that the SPECS file must specily a SUPERBASICS
LIMIT at lcast as large as the number of variables involved, even for purely linear problems.

Sequences of Problems

Whenever practical, a scries of related problems should be ordered so that the most tightly
constrained cases are solved first. Their solutions will often provide feasible starting points for
subsequent relaxed problems, as long the above precautions are taken.

568 5. DASIS Files

Altering Bounds with the CYCLE Option

Sequences of problems will sometimes be defined in conjunction with the CYCLE facilities. Various
alterations can be made to each problem from within your own subroutine MATMOD. In particular,
it is straightforward to alter the bounds on any of the columns or slacks.

Unfortunately, the present implementation of MINOS does not make it easy to alter the set
of superbasic variables from within MATMOD. If the bound on a nonbasic¢ variable is altered, it is
simplest to accept the resulting perturbation to the values of the basic variables (rather than
making the variable superbasic as suggested above).

6.1 Iteration Log 57

8. OUTPUT

The following information is output to the PRINT file during the solution of each problem referred
to in the SPECS file.

o A listing of the relevant part of the SPECS file.

o A listing of the parameters that were or could have been set in the SPECS file.

e An estimate of the amount of working storage nceded, compared to how much is available.
¢ A listing of the MPS file, possibly abbreviated to the header cards and comment cards.

o Some statistics about the problem in the MPS file.

o The amount of storage available for the LU factorization of the basis matrix.

e A summary of the scaling procedure, if SCALE was specified.

« Notes about the initial basis resulting from a CRASH procedure or a BASIS file.

e The iteration log.

o Basis lactorization statistics.

e The EXIT condition and some statistica about the solution obtained.
e The printed solution, if requested.

The last four items are described in the following sections. Further brief output may be
directed to the SUMMARY file, as discussed in section 8.8.

8.1 Iteration Log

One line of information is output to the PRINT file every k-th minor iteration, where k is the
specified LOG FREQUENCY (default k£ = 1). A heading is printed before the first such line following
a basis factorization. The heading contains the items described below. In this description, a
PRICE operation is'defined to be the process by which one or more nonbasic variables are selected
to become superbasic (in addition to those already in .the superbasic set). Normally just one
variable is selected, which we will denote by JQ. If the problem is purely linear, variable JQ will
usually become basic immediately {unless it should happen to reach its opposite bound and return
to the nonbasic set).

If PARTIAL PRICE is in effect, variable JQ is selected {rom App or /pp, the PP-th segments of
the constraint matrix (A). If MULTIPLE PRICE is in effect, several variables may be selected’
from App or Ipp. In this case, JQ refers to the variable with the largest favorable reduced cost,

DJ.

Label Description

ITN The current iteration number. For problems with nenlincar constraints, this is the
cumulative number of minor iterations.

PH The current phase of the solution procedure, as follows:

1 Phase 1 of the simplex method is being uscd to find a feasible point.
2 Phase 2 of the simplex method is being used to optimize the linear objective.

Normally, Phase 1 and 2 are used for purcly lincar problems. They may also be
used at Lhe start of a run even for nonlinear problems, if the initial basis contains
only linear variables. Any superbasic variables will be temporarily held at their

initial values.

58

8. Qutput

PP

NOPT

DJ,RG

+5B8

-5BS

STEP

PIVOT

Phase 3 of the reduced-gradient procedure is being used. This is the same as Phase
4 except that a PRICE opera.ion is performed prior to the iteration, adding one
or more nonbasic variables to the superbasic set.

Phase 4 of the reduced-gradient procedure is being used. Optimization is per-
formed on the basic and superbasic variables (ignoring the nonbasics).

The Partial Price indicator. The variable(s) selected by the last PRICE operation
came [rom the PP-th partition of A and I. PP is set to zero when the basis is
refactored. It is reset during Phase 1, 2 or 3.

The number of “non-optimal” variables present in the set of nonbasic variables
that were scanned during the last PRICE operation. It is reset during Phase 1, 2
or 3.

In Phase 1, 2 or 3, this is DJ, the reduced cost (or reduced gradient) of the variable
JQ selected by PRICE at the start of the present iteration. Algebraically, DJ is
d; = g; — xTa; for j = JQ, where g; is the gradient of the current objective
function, = is the vector of dual variables, and a; is the j-th column of the
constraint matrix (4 I).

[n Phase 4, this quantity is RG, the norm of the reduced-gradient vector afier the
present iteration. (It is the largest value of |d;| for variables j in the superbasic
set.)

Note that for Phase 3 iterations, DJ is the norm of the reduced-gradient vector at
the start of the iteration, just after the PRICE operation.

The variable JQ sclected by PRICE to be added to the superbasic set. (This is
zero in Phase 4.)

The variable chosen to leave the set of superbasics. [t has become basic if the
entry under -BS is nonzero; otherwise it has become nonbasic.

The variable removed from the basis (il any) to become nonbasie.

The step length a taken along the current scarch direction p. The basic and
superbasic variables z,, have just been changed to z,4 + ap.

If column a, replaces the r-th column of the basis 3, PIVOT is the r-th clement of a
vector y satisfying By = a,. Wherever possible, STEP is chosen to avoid extremely
small values of PIVQT (since they cause the hasis Lo be nearly singular). [n rare
cases, it may be neccssary to incrcase the PIVOT TOLERANCE to exclude very small
elements of y from consideration during the computation of STEP.

The number of nonzeros representing the basis factor £.. lmimediately after a basis
factorization B = LI/, this is LENL, the number of subdiagonal clements in the
columns of a lower triangular matrix. Further nonzeros are added to L when
various columns of B are later replaced. (Thus, L increases monotonically.)

The number of nonzcros in the basis factor U/. Immediately alter a basis factoriza-
tion, this is LENU, the number of diagonal and superdiagonal clements in the rows
of an upper triangular matrix. As columns of f} arc replaced, the matrix U is
maintained explicitly {in sparse form). The value of U may fluctuate up or down;
in general it will tend to increase.

8.1 Iteration Log 59

NCP

NINF

The aumber of compressions required to recover storage in the data structure for
U. This includes the number of compressions nceded during the previous basis
factorization. Normally NCP should increase very slowly. If not, the amount of
workspace available to MINOS should be increased by a significant amount. As a
suggestion, the work array Z(*) should be extended by L + U elements.

The number of infeasibilities before the present iteration. This number decreases
monotonicaily.

SINF,OBJECTIVE If NINF > 0, this is SINF, the sum of infeasibilities before the present iteration.

(It will usually decrease at each nonzero STEP, but if NINF decreases by 2 or more,
SINF may occasionally increase.)

Otherwise, it is the value of the current objective function after the present
iteration. Note that “current objective function” can mean different things when
NINF == 0. For linear programs, it mecans the true linear objective function. For
problems with linear constraints, it means the sum of the linear objective and-the
value returned by subroutine FUNOBJ. For problems with nonlinear constraints, it
is the quantity just described il LAGRANGIAN = NO; otherwise it is the value of the
augmented Lagrangian {unction for the current major iteration (which tends to
the true objective function as convergence is approached).

The following items are printed if the problem is nonlinear or if the superbasic set is non-empty
{i.e., if the current solution is nonbasic).

Label

NCON

NOBJ

HMOD

Description

The number of times subroutine FUNCON has been called to evaluate the nonlincar
constraint functions.

The number of times subroutine FUNOBJ has been called to evaluate the nonlincar
objective function.

The current number of superbasic variables,

An indication of the type of modifications made to the triangular matrix f¢ that
is used to approximate the reduced Hessian matrix. Two inlegers #; and iz are
shown. They will remain zero for linear problems. If{; = 1, a BFGS quasi-Ncwton
update has been made to R, to account for a move within the current subspace.
(This will not occur if the solution is infeasible.) If 13 = 1, R has been moditicd
to account for a change in basis. This wili sometimes occur even if the solution is
infeasible (il a (easible point was obtained at some earlier stage).

Both updates are implemented by triangularizing the matrix R + vwT for some
vectors v and w. If an update fails for numerical reasons, 1y or iy will be sel to 2,
and the resulting R will be nearly singular. (However, this is highly unlikcly.)

8. Qutput

H-CONDN

CONV

An estimate of the condition number of the reduced Hessian. It is the square of
the ratio of the largest and smallest diagonals of the upper triangular matrix R.
This constitutes a lower bound on the condition number of the matrix RTR that
approximates the reduced Hessian. H-CONDN gives a rough indication of whether or
not the optimization procedure is having difficulty. If € is the relative precision of
the machine being used, the reduced-gradient algorithm will make slow progress if
U-CONDK becomes as large as e~1/2, and will probably fail to find a better solution
:f H-CONDN reaches e=3/4 or larger. (On IBM-like machines, these values are about
108 and 10'3.)

To guard against high values of H-CONDN, attention should be given to the scaling
of the variables and the constraints. In some cases it may be necessary to add
upper or lower bounds to certain variables to keep them a reasonable distance
from singularities in the nonlinear functions or their derivatives.

A set of four logical variables Cy, Cz, Ca, C, that are used to determine when to
discontinue optimization in the current subspace (Phase 4) and consider releasing a
nonbasic variable from its bound (the PRICE operation of Phase 3). Let RG be the
norm of the reduced gradient, as deéscribed above. The meaning of the variables
Cj is as lollows:

C, is TRUE if the change in z was sufficiently small;

C, is TRUE il the change in the objective was sufficiently small;
C4 is TRUE if RG is smaller than some loose tolerance TOLRG;
C, is TRUE if RG is smaller than some tighter tolerance.

The test used is of the form
if {C, and Cq and C3) or C, then go to Phase 3.

[n the present implementation, TOLRG == t|DJ}, where ¢ is the SUBSPACE TOLERANCE
(nominally 0.5} and DJ is the reduced-gradient norm at the most recent Phase 3
iteration. The “tighter tolerance” is the maximum of 0.1 TOLRG and 10~7||x]|.
Only the tolerance & can be altered at run-time (sce section 3.3).

8.2 Basis Factorization Statistics §1

6.2 Basis Factorization Statistics

The lollowing itema are output whenever the basis matrix B is factored. Gaussian elimination is
used to compute an LU factorization of the form

B=LU,

where L is unit lower triangular and PUQ is upper triangular {or some permutation matrices £
and Q. This factorization is stabilized in the manner described under LU FACTOR TOLERANCE in

section 3.3.

Label
FACTORIZE
DEMAND

ITERATION
INFEAS
OBJECTIVE

NONLINEAR
LINEAR
SLACKS
ELENS
DENSITY

COMPRSSNS

MERIT

LENU

Description
The number of factorizations since the start of the run.

A code giving the reason for the present factorization. (Since this is not important
to the user we omit details.)

The current iteration number.
The number of infeasibilities at the start of the previous iteration.
If INFEAS > 0, this is the sum of infeasibilities at the start of the previous iteration.

If INFEAS = 0, this is the value of the objective function after the previous
iteration. If there are nonlinear constraints, it is the value ol the augmented
Lagrangian for the present subproblem.

The number of nonlinear variables in the current basis B.
The number of linear variables in B.

The number of slack variables in B.

The number of nontero matrix clements in B.

The percentage nonsero density of 13, 100 X ELEMS/(X X M}, where M is the number
of rows in the problem (M == NONLINEAR + LINEAR + SLACKS).

The number of times the data structure holding the partially factored malrix
needed to be compressed, to recover unused storage. [deaily this number should
be zero. If it is more than 3 or 4, the amount of workspace available to MINOS
should be increased for efficiency.

The average Markowits merit count for the clements chosen to be the diagonals
of PUQ. Each merit count is defined to be (¢ — 1)(r —) where ¢ and r are the
number of nonzeros in the column and row containing the clement at the time it
is selected to be the next diagonal. MERIT is the average of K such quantities. [t
gives an indication of how much work was required Lo prescrve sparsity during the
factorization.

The number of nonzeros in L. On IBM-like machines, cach nonzero is represented
by onc REAL#8 and two INTEGER#2 dala types.

The number of nonzeros in /. The storage required for each nonzero is the same
as for the nonzeros of L.

62 8. Output

INCREASE The percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in B; i.e., 100 X (LENL + LENU — ELENS)/ELEMS.

LMAX The maximum subdiagonal element in the columns of L. This will be no larger
than the LU FACTOR TOLERANCE.

BMAX The maximum nonzero element in 5.

UMAX The maximum nonzero element in U, excluding elements of B that remain in U
unaltered. (For example, if a slack variable is in the basis, the corresponding row
of B will become a row of I/ without alteration. Elements in such rows will not
contribute to UMAX. If the basis is strictly triangular, none of the elements of B
will contribute, and UMAX will be zero.)
Ideslly, UMAX shouid not be substantiaily larger than BMAX. If it is several orders
of magnitude larger, it may be advisable to reduce the LU FACTOR TOLERANCE to
some value nearer 1.0. (The default value is 10.0.)

UMIN The smallest diagonal element of PUQ in absolute magnitude.

GROWTH The ratio UMAX/BMAX, which should not be too large (see above).

As long as LMAX is not large (say 10.0 or less), the ratio max {BMAX, UMAX} /UMIN
gives an estimate of the condition number of B. If this number is extremely large,
the basis is ncarly singular and some numerical difficultics could conceivably occur.
(However, an effort is made to avoid near-singularity by using slacks to replace
columns of B that would have made UMIN extremely small. Messages are issued to
this effect, and the modified basis is refactored.)

6.3 EXIT Conditions 63

8.3 EXIT Conditions

For each problem in the SPECS file, a message of the form EXIT -- message is printed to
summarize the final result. Here we describe each message and suggest possible courses ol action.

System Note: A number is associated with each message below. It is the final value assigned
to the integer variables INFORM and IERR, for possible use within subroutines MINOS1 and MINOS2.
The variables appear in the declarations

SUBROUTINE MINCS2(Z,NWCORE,NCALLS, INFORM)
and
COMMON /M5L0G1/ IDEBUG, IERR,LPRINT

If a problem is infeasible, for example, their final values will be INFORM = IERR = 1.

The following messages arise when the SPECS file is found to contain
no further problems.

-3. EXIT -- INPUT ERROR. MINOS ENCOUNTERED END-OF-FILE OR AN
ENDRUN CARD BEFORE FINDING A SPECS FILE ON UNIT nn
The SPECS file may not be properly assigned. Its unit number nn is defined at compile time in
subroutine MIFILE, and normally it is the system card input stream.
Otherwise, the SPECS file may be empty, or cards containing the keywords SKIP or ENDRUN
may imply that ail problems should be ignored (see section 1.8).

-1, ENDRUN
This message is printed at the end of a run if MINOS terminates of its own accord. Otherwise,

the operating system will have intervened for one of many possible reasons (cxcess time, missing
file, arithmetic error in user routines, etc.).

The following messages arise when optimization terminates grace-
fully. A solution exists, any of the BASIS files may be saved, and
the solution will be printed and/or saved on the SOLUTION file if

requested.

0. EXIT -- OPTIMAL SOLUTION FOUND
This is the message we all hope to sce! [t is certainly preferable to every other message,
and we naturally want to believe what it says, because this is surcly one situation where the
computer knows best. There may be cause for celebration if the objective function has reached
an astonishingly new high (or low). Or perhaps it will signal the cnd of a strenuous series of runs
that have iterated [ar into the night, depleting one's palience and comnputing funds to an equally
alarming degree. {We hope not!)

In all cases, a distinct level of caution is in order, cven if it ean wait until next morning. For
example, if the objective value is much better than expected, we may have obtained an optimal
solution Lo the wrong problem! Almost any item of data could have that effect, il it has the wrong
value or is entered in the wrong columns of an input record. There may be thousands of items of
data in the MPS file, and the nonlinear functions (il any) could depend on input files and other

64 8. Output

data in innumerable ways. Verifying that the problem has been defined correctly is one of the
more difficult tasks for a model builder. For early runs, we suggest that the LIST LIMIT be set
to a suitably large number to allow the MPS file to be printed for visual checking. It is also good
practice in the function subroutines to print any data that is read in on the first entry.

If nonlinearities exist, one must always ask the question: could there be more than one iocal
optimum? When the constraints are linear and the objective is known to be convex (e.g., a sum
of squares) then all will be well if we are minimizing the objective: a local minimum is a global
minimum in the sense that no other point has a lower function value. (However, many points
could have the same objective value, particularly if the objective is largely linear.} Conversely, if
we are maximizing a convex function, a local maximum cannot be expected to be global, unless
there are sufficient constraints to confine the [easible region.

Similar statements could be made about nonlinear coanstraints defining convex or concave
regions. However, the functions of a problem are more likely to be neither convex nor concave.
Our advice is always to specify a starting point that is as good an estimate as possible, and to
include reasonable upper and lower bounds on all variables, in order to confine the solution to
the specific region of interest. We expect modellers to know something about their problem, and
to make use of that knowledge as they themselves know best.

One other caution about “OPTIMAL SOLUTION"s. When nonlinearities are present, the final
size of the reduced-gradient norm (NORM RG) should be examined to see if it is reasonably small
compared to the norm of the dual variables (NORM PI). These quantities are printed following the
EXIT message. MINOS attempts to ensure that

NORM RG / NORM PI < OPTIMALITY TOLERANCE.

However, il messages of the form XOX SEARCH TERMINATED occur at the end of the run, this
condition will probably not have been satisfied. The final solution may or may not be acceptably
close to optimal, Broadly speaking, if

NORM RG / NORM PI = 1079,

then the objective function would probably change in the d-th significant digit if optimization
could be continued. One must judge whether or not d is sufficiently large.

1. EXIT -- THE PROBLENM IS INFEASIBLE
When the constraints are linear, this message can probably be trusted. Feasibility is measured
with respect to the upper and lower bounds on the variables. The message lells us that among
all the points satisfying the general constraints Az + 3 = 0, there is apparently no point that
satisfies the bounds on z and s. Violations as small as the FEASIBILITY TOLERANCE arc ignored,
but at least one component of z or s violates a bound by more than the tolerance.

Note: Although the objective function is the sum of inleasibilitics {when NINF > 0), this sum
will usually not have been minimized when MINOS recognizes the situation and exits. There may
exist other points that have a significantly lower sum of infeasibilities.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly.
Even il a feasible solution cxists, the current linearization of the constraints may not contain a
feasible point. In an attempt to deal with this situation, MINOS is prepared to relax the bounds
on the slacks associated with nonlinear rows. In the current implementation, the bounds arc
relaxed by increasingly large amounts up to 5 times per major iteration. Normally a feasible point

8.3 EXIT Conditions §5

will be obtained to the perturbed constraints, and optimization can continue on the subproblem.
However, if 5 consecutive subproblems require such perturbation, the problem is terminated
and declared INFEASIBLE. Clearly this is an ad hoc procedure. Wherever possible, nonlinear
constraints should be defined in such a way that fcasible points are known to exist when the
constraints are linearized.

2. EXIT -- THE PROBLEM IS UNBOUNDED (OR BADLY SCALED)
For linear problems, unboundedness is detected by the simplex method when a nonbasic variable
can apparently be increased or decreased by an arbitrary amount without causing a basic variable
to violate a bound. A message prior to the EXIT message will give the index of the nonbasic
variable. Consider adding an upper or lower bound to the variable. Also, examine the constraints
that have nonzeros in the associated column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an
erroneous indication of unboundedness, Consider using the SCALE option.

For nonlinear problems, MINOS monitors both the size of the current objective function and
the size of the change in the variables at each step. If either of these is very large (as judged by
the UNBOUNDED parameters — see section 3.3), the problem is terminated and declared UNBOUNDED.
To avoid large function values, it may be necessary to impose bounds on some of the variables in
order to keep them away from singularities in the nounlinear functions.

3. EXIT -- TOO MANY ITERATIONS
Either the ITERATIONS LIMIT or the MAJOR ITERATIONS LIMIT was exceeded before the required
solution could be found. Check the iteration log to be sure that progress was being made. 1f so,
restart the run using a basis file that was saved (or should have been saved!) at the end of the
run.

4. EXIT -- THE OBJECTIVE HAS NOT CHANGED FOR THE LAST nnn ITERATIONS
This is an emergency measure for the rare occasions when the solution pracedure appears to be
cycling. Suppose that a zero step is taken for several consecutive iterations, with a basis change
occurring cach time. It is theoretically possible for the set of basic variables to become the same
as they were one or more iterations earlier. The same sequence of iterations would then occur ad
infinitum.

No direct attempt is made to recognize such cycling. The method used for delermining
the step size tends to guard against it happening, but nothing is guarantecd. Furthermore, on
so-called degenerate models (in which many basic variables arc equal in valuc to their upper or
lower bounds), a great number of consecutive zero steps may have to occur before any progress
can be made. A generous limit is thercfore used on the number of consccutive zero steps allowed
belore this exit is taken. For small problems, the limit nnn is the maximum of 200 and 2(m + n).
For large problems (m +n > 1000) it is 1000.

5. EXIT -- THE SUPERBASICS LIMIT IS TOO SMALL... nnn
The problem appears to be more nonlinear than anticipated. The current set of basic and

superbasic variables have been optimized as much as possible and a PRICE operation is neccssary
to continue, but there are already nnn superbasics {and no room for any more).

In general, raise the SUPERBASICS LIMIT s by a reasonable amount, bearing in mind the
storage needed for the reduced Ilessian. (The HESSIAN DIMENSION A will also increase to 3

66 6. Qutput

unless specified otherwise, and the associated storage will be about i /232 words.) In extreme
cases you may have to set A < s to conserve storage, but beware that the rate of convergence
will probably fall off severely.

6. EXIT -- REQUESTED BY USER IN SUBROUTINE FUNOBJ (or FUNCON)
AFTER nnn CALLS

This exit occurs if the subroutine parameter MODE is set to a negative number during some call
to FUNGBJ or FUNCON. MINOS assumes that you want the problem to be abandoned forthwith.

In some environments, this exit means that your subroutines were not successfully linked
to MINOS. If the default versions of FUNOBJ and FUNCON are ever called, they issue a warning
message and then set MODE to terminate the run. For example, you may have asked the operating
system to

LINK MINOS, FUNOBJ, FUNCON
when in fact you should have said
LINK FUNOBJ, FUNCON, MINOS

(or something similar) to give your own subroutines priority. Most linkers or loaders retain the
first version of any subprogram that they see.

7. EXIT -- SUBROUTINE FUNOBJ SEEMS TO BE GIVING INCORRECT GRADIENTS
A check has been made on some individual elements of the gradient array, and at least one
component G(j) is being set to a value that disagrees markedly with a forward-difference estimate
of 8F [dz;. (The relative difference between the computed and cstimated values is 1.0 or more.)
This exit is a safeguard, since MINOS will usually fail to make progress when the computed
gradients are seriously inaccurate. In the process it may expend considerable effort before
terminating with exit 9 below.

Check the function and gradient computation very carcfully. A simple omission (such as
forgetting to divide F by 2) could explain everything. IT F or G(7) is very large, then give serious
thought to scaling the function or the nonlinear variables.

If you feel certain that the computed G(5) is correct (and that the Torward-diflerence estimate
i3 therefore wrong), you can speclfly VERIFY LEVEL & Lu provent individual clemecnta from being

checked. However, the optimization procedure is likely to terminate unsuccessfully.

8. EXIT -- SUBROUTINE FUNCON SEEMS TO BE GIVING INCORRECT GRADIENTS

This is analogous to the preceding exit. At leasl one of the computed Jacobian elemncnts is
significantly different from an estimate obtained by lorward-diflerencing the constraint vector
f(z). Follow the advice given above, trying to ensure thal the arrays F and G are being set
correctly in subroutine FUNCON.

@. EXIT -- THE CURRENT POINT CANNOT BE IMPROVED UPCN
Several circumstances could lead to this exit.
1. Subroutine FUNOBJ and/or subroutine FUNCON could be returning accurate function values

but inaccurate gradients (or vice versa). This is the most likely cause. Study the comments
given for exits 7 and 8, and do your utmost to ensure that the subroutines are coded correctly.

6.3 EXIT Coﬂditioﬂs 67

2. The function and gradient values could be consistent, but their precision could be too low. For
example, accidental use of a single-precision data type when double-precision was intended
throughout, would lead to a relative lunction precision of about 10~8 instead of something
like 10~15. The default QPTIMALITY TOLERANCE of 10~® would need to be raised to about
10~3 for optimality to be declared (at a rather suboptimal peint). Of course, it is better to
revise the function coding to obtain as much precision as economically possible.

3. Il function values are obtained from an expensive iterative process, they may be accurate
to rather few significant figures, and gradients will probably not be available. One should
specify

FUNCTION PRECISION t

OPTIMALITY TOLERANCE 't
but even then, if ¢ is as large as 10~ or 10~% {only 5 or 6 significant figures), the same exit
condition may occur. At present the only remedy is to increase the accuracy of the function
calculation.

10. EXIT -- NUMERICAL ERROR. GENERAL CONSTRAINTS CANNOT BE SATISFIED ACCURATELY
An LU factorization of the basis has just been obtained and used to recompute the basic variables
zg, given the present values of the superbasic and nonbasic variables. A single step of “iterative -
refinement” has also been applied to increase the accuracy of zg. However, a row check has
revealed that the resulting solution does not satisfy the current constraints Az +s = 0 sufficiently
well,

This probably means that the current basis is very ill-conditioned. Request the SCALE option
if there are any linear constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a systematic
growth may occur in the factor U. Consult the description of UMAX, UMIN and GROWTH in section
8.2, and set the LU FACTOR TOLERANCE to 2.0 (or possibly even smaller, but not less than 1.0).

11. EXIT -- CANNOT FIND SUPERBASIC TO REPLACE BASIC VARIABLE

If this exit occurs, the problem must be very badly scaled. A basic variable has reached a bound
and must be replaced, but none of the superbasic columns has a pivot clement exceeding the
PIVOT TOLERANCE. The latter could be reduced {at great risk). You should first try specifying
SCALE.

12. EXIT -- BASIS FACTORIZATION REQUESTED TWICE IN A ROW

This exit may occur after the linesearch has terminated unsuccessfully several times in a row. [t
is a saleguard to prevent the various recovery measurcs from being repcated endlessly. It should
probably be treated as il it were exit 9.

68 8. Output

If the following exits occur during the first basis factorization, the
basic variables zg will have certain default values that may not be
particularly meaningful, and the dual vector = will be zero. BASIS
files will be saved il requested, but certain values in the printed
solution will not be meaningful. The problem will be terminated,
even if the CYCLE LIMIT has not yet beea reached.

20. EXIT -- NOT ENQUGH STORAGE FOR THE BASIS FACTORIZATION
The main storage array Z(#) is apparently not large enough for this problem. The routine
declaring Z is probably the main program. It should be recompiled with a larger dimension for
Z. The new value should also be assigned to NWCORE.

In some cases it may be sufficient to increase the specified WORKSPACE (USER), ifitis currently
less than WORKSPACE (TOTAL).

An estimate of the additional storage required is given in messages preceding the exit.

21. EXIT -- ERROR IN BASIS PACKAGE

A preceding message will describe the error in more detail. One such message says that the current
basis has more than one element in row 1 and column 3. This could be caused by a corresponding
error in the MPS file. (MINOS does not check for duplicate row names within each column.}
Determine the name of row ¢ (e.g., by consulting the i-th entry in the rows section of the printed
solution), and scan the COLUMNS section of the MPS file for that name. Alternatively, check
the (j — {)-th variable in the COLUMNS section of the MPS file, where [is the number of slack
variables in the basis,

22. EXIT -~ THE BASIS 1S STRUCTURALLY SINGULAR AFTER TWO FACTORIZATION ATTEMPTS
This exit is highly unlikely to occur. The first factorization attempt will have found the basis
to be structurally or numerically singular. (Some diagonals of the triangular matrix PUQ were
respectively zero or smaller than a certain tolerance.} The associated variables are replaced by
slacks and the modified basis is refactorized. The ensuing singularity must mean that the problem
is badly scaled, or the LU FACTOR TOLERANCE is too high.

If the lollowing messages arise, the MPS file was read successfully.
However, either an OLD BASIS file coutd not Le loaded properly, o
some latal system error has occurred. New BBASIS liles eannot be
saved, and there is no solution to print. The problem is abandoned.

30. EXIT -~ THE BASIS FILE DIMENSIONS DO NOT MATCH TH1S PROBLEM
On the first card of the OLD BASIS file, the dimensions labelled M and N are different from those
associated with the MPS file that has just been read. You have probably loaded a file that belongs
to some other problem.

Rlemember, if you have added rows or columns Lo the MPS Gle, you will have to alter M and
N and the map beginning on the third card (a hazardous operalion). IL may be casier to restart
with a PUNCH or DUMP file (rom the earlier version of the problem.

‘--------

i

|

6.3 EXIT Conditions 69

31. EXIT -- THE BASIS FILE STATE VECTOR DOES NOT MATCH THIS PROBLEM

For some reason, the OLD BASIS file is incompatible with the present problem, or is not consistent
within itself. The number of basic entries in the state vector (i.e., the number of 3'sin the map) is
not the same as M on the first card, or else some of the 2's in the map did not have a corresponding
J 1z, entry following the map.

32. EXIT -- SYSTEM ERROR. WRONG NO. OF BASIC VARIABLES... nnn
This exit should never happen. If it does, something is seriously awry in the MINOS source code.
Perhaps the single- and double-precision files have been mixed up.

The following messages arise if the MPS file is seriously deficient, or
if additional storage is needed to allow the MPS f[ile to be input or to
allow optimization to begin. The problem is abandoned.

40. EXIT -- FATAL ERRORS IN THE MPS FILE
One of the following conditions exists:

1. There are no entries in the ROWS section.
2. There are no entries in the COLUMNS section.

3. A type N row has been selected to be the linear objective row, but it is one of the first m,
rows, where m, is the number of NONLINEAR CONSTRAINTS.

The first two conditions speak for themselves. If condition 3 occurs, the N row may be have been
selected by default (if you did not specily any 0BJECTIVE name in the SPECS file). To prevent
this, specify some olher (possibly fictitious) row name. Otherwise, you must put the ¥ row afier
the nonlinear row names in the ROWS section.

41. EXIT -- NOT ENOUGH STORAGE TO READ THE MPS FILE
One of the ROWS, COLUMNS, or ELEMENTS estimates in the SPECS file proved to be too small. The
minimum (exact) values are shown in earlier messages. You must specify these values, or higher
valucs, and re-run the problem.

If the MPS data had been on a file of its own (rather than in the card input stream), MINOS
would have been able to continue by rewinding the MPS file and trying again.

42. EXIT -- NOT ENOUGH STORAGE TO START SOLVING THE PROBLEM

The MPS file was read succesfuily, but the main storage array Z (#) is not large cnough to provide
workspace for the optimization procedure. Be sure that the SUPERBASICS LIMIT and HESSIAN
DIMENSION are not unreasonably large. Qtherwise, see the advice given for exit 20.

70 6. Output

6.4 Solution Output

At the end of a run, the final solution will be output to the PRINT file in accordance with the
SOLUTION keyword. Some header information appears first to identify the problem and the final
state of the optimization procedure. A ROWS section and a COLUMNS section then follow,
giving one line of information for each row and column. The format used is similar to that seen
in commercial systems, though there is no rigid industry standard.

ROWS Section

The general constraints take the form { < f ('z) + Ay € u, where z and y are the nonlinear and
linear variables respectively. The i-th constraint is therefore of the form

ag fz)+aTy < 4,

and we define the i-th “row” to be the linearization of fi(z) + aTy. For linear constraints, the
i-th row is just aTy.

Internally, the constraints take the form Lf{z) + Ay + 8 = 0 where Lf(z) is the current
linearization of f(z), and s is the set of slack variables (which happen to satisly the bounds
—u < s < —l). For the i-th constraint it is the slack variable s; that is directly available, and it
is sometimes convenient to refer to its state.

Label Description

NUMBER The value n + i. This is the internal number used to refer to the i-th slack in the
iteration log.

ROW The name of the i-th row.

STATE The- state of the i-th row relative to the bounds a and 8. The various states

possible are as follows.
LL The row is at its lower limit, a.
UL The row is at its upper limit, 3.
EQ The row is equal to the RHS element, a = 5.
88 The constraint is not binding. »; is basic.
SBS The constraint is not binding. s; is superbasic.

A key is sometimes printed before the STATE to give some additional information
about the state of the slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient is
essentially zero. This means that if the slack were allowed to start moving away
from its bound, there would be no change in the value of the objective function.
The values of the basic and superbasic variables might change, giving a genuine
alternative solution. However, if there are any degencrate variables (labetled D),
the actual change might prove to.be zcro, since one of them could encounter a
bound immediately. In either casc, the values of dual variables might also change.

D Degencrate. The slack is basic or superbasic, but it is equal to (ot very close to)
one of its bounds.

6.4 Solution Qutput 4!

ACTIVITY

Infeasible. The slack is basic or superbasic and it is currently violating one of its
bounds by more than the FEASIBILITY TOLERANCE.

Not precisely optimal. The slack is nonbasic or superbasic. If the OPTIMALITY
TOLERANCE were tightened by a factor of 10 {e.g., if it were reduced from 105 to
107%), the solution would not be declared optimal because the reduced gradient
for the slack would not be considered negligible. (If a loose tolerance has been
used, or if the run was terminated before optimality, this key might be helpful in
deciding whether or not to restart the run.)

Note: Il SCALE is specified, the tests for assigning the A, D, I, N keys are made on
the scaled problem, since the keys are then more likely to be correct.

The row value; i.e., the value of aTy for linear constraints, or the value of the
linearization Lf*(z) + aTy if the constraint is nonlinear.

SLACK ACTIVITY The amount by which the row differs from its nearest bound. (For free rows,

it is taken to be minus the ACTIVITY.)

LOWER LIMIT a, the lower bound on the row.
UPPER LIMIT J, the upper bound on the row.
DUAL ACTIVITY The value of the dual variable ;, often called the shadow price (or simplex

multiplier) for the i-th constraint. The full vector x always satisfies BTr = a8,
where B is the current basis matrix and gg contains the associated gradients for
the current objective function.

If the solution is feasible, the first m components of x are used at the start of the
k-th major iteration to define), the estimate of the Lagrange multipliers for the
notlinear constraints.

The constraint number, 1.

COLUMNS Section

Here we talk about the “column variables” {z,y). For convenicnce we let the j-th component
of (z,y) be the variable z; and assume that it satisfies the bounds & < z; < B. Linear and
nonlinear variables are treated the same.

Label
NUMBER

COLUMN
STATE

LL

EQ

Description

The column number, 7. This is the internal number used to refer to z, in the
iteration log. :

The name of z;.

The state of z; relative to the bounds a and 8. The various states possible are as
follows.

z; is nonbasic at its lower limit, a.
z, is nonbasic at its upper limit, 8.

z; is nonbasic and fixed at the value @ = 8.

73 &. Output

FR 1z, is nonbasic and currently zero, even though it is free to take any value. (Its
bounds are @ = —co, 8 = +o00. Such variables ate normally basic.)

BS z; is basic.
SBS z; is superbasic,

A key is sometimes printed before the STATE to give some additional information
about the state of z;. The possible keys are A, D, I and N. They have the same
meaning as described above {for the ROWS section of the solution), but the words
“the slack” should be replaced by “z;".

ACTIVITY The value of the variable z;.

QBJ GRADIENT g, the j-th component of the combined linear and nonlinear objective function
F(z) + ¢Tz + dTy. (We define g; = 0 if the current solution is infeasible.)

LOWER LIMIT a, the lower bound on z;.
UPPER LIMIT J, the upper bound on z;.

REDUCED GRADNT The reduced gradient d; == g; — xTa,, where a; is the j-th column of the
constraint matrix (or the j-th column of the Jacobian at the start of the final
major iteration).

MeJ The value m + j.

An example of the printed solution is given in chapter 8. Infinite UPPER and LOWER LINITS
are output as the word NONE. Other real values are output with format F18.5. The maximum
record length is 111 characters, including the first (carriage-control) character.

Note: If two problems are the same except that one minimizes F(z) and the other maximizes
—F(z), their solutions will be the same but the signs of the dual variables x; and the reduced
gradients d; will be reversed.

6.5 SOLUTION File

If a positive SOLUTION FILE is specified, the information contained in 2 printed sotution may
also be output to the relevant file (which may be the PRINT file if so desired). Infinite UPPER
and LOWER LIMITS appear as £10°9 rather than NONE. Other real values are output with forinat
1PE16.8. Again, the maximum record length is 111 characters, including what would be the
carriage-control character if the file were printed.

A SOLUTION fie is intended to be read from disk by a self-contained program that extracts
and saves certain values as required for possible further computation. Typically the first 14
records would be ignored. Each subsequent record may be read using

FORMAT(I8, 2X, 2A4, iX, A1, 1X, A3, BE16.8, I7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that starts
with a 1 and is otherwise blank. If this and the next 4 records are_skipped, the COLUMNS
section can then be read under the same format. (There shouid be no need to usc any BACKSPACE

statements.)

5.8 SUMMARY File 73

6.6 SUMMARY File

1f SUMMARY FILR [is specified with f > 0, certain bricl information will be output to fle f.
When MINOS is run interactively, file f will usually be the terminal. For batch jobs, a disk file
should be used to retain a concise log of each run (if desired; a SUMMARY file is more easily
perused than the associated PRINT file}.

A SUMMARY file {like the PRINT file) is not rewound after a problem has been processed. [t
can therefore accumulate a log for every problem in the SPECS file, if each specifies the same file.
The maximum record iength is 72 characters, including a carriage-control character in column 1.

The following information is included:

‘1. The BEGIN card from the SPECS file.
2. The actusl number of rows, columns and elementa in the MPS Ble.
3. The basis fle loaded, if any.
4. The status of the solution after each basis factorization {whether feasible; the objective value;
the number of function calls so far).
5. The same information every k-th iteration, where k is the specified SUMMARY FREQUENCY
(default & = 100).
6. Warnings and error messages.
7. For nonlinear constraints, ||zx+1 = Zll, [IAs+1=2xl| and the norm of the nonlinear constrsint
violation at the start of each major iteration.
8. The exit condition and a summary of the final solution.

Item 4 is preceded by a blank line, but item § is not. All items are illustrated in Figure 6.1, which
shows the SUMMARY #ile for the test problem MANNE, using SUMMARY FREQUENCY 1.

MINOS 5.1 (Jan 1987)

BEGIN MANNELD
SCALE OPTION o
HAME MANNEYS

ROWS 20
000 Harning - no linsar ocbjsstive selected
COLUMNS 30

ELEWENTS 9
VO Merning = the RHS s zere

000t Totsl no. of errors in MPS Hle

wn FUNCON wsets 7 out of 10 comstraint sradients.
san FUNOBS sels 17 out of 20 objeciive gradients.
START OF MAJOR ITN 1 PENALTY PARAMETER = 1.00E8=-01

Cormtraint violation = 0.0000E+00
Itn Nept Ninf Sinf,Objective Nobj Neen NSB

1 -4 § 1.00000000E~-03 20 13 8
2 -1 0 2.64982754E400 30 23 8
Optimal subproblem at minor itn 2 -~ Total 1tm = 2

4

6. Output

STARY OFf MAJOR ITHN PINALTY PARMRTER v 1.00K=8¢
Charwe \n Jacon vers = 3.33331-02
Charge 'n sultipliors = 9. 84430400
Cormtraint vielatien 3 9,17358-04

Multiplior satimetes

S.9J07TLI-01 S.1061THNME=-01 S.49T1EBE-0T T.¥NTH-N1

Itn Nopt Ninf Sinf.Ohjestive Nebj MNeen WIS

3 = & L2.609%202004%00 (1] w T

LY -9 ¥ f.6708R200E'00 L] L]] 7
Optissl subpreblem st airner in & - Total itm s 4

START OF MAJOR ITH 3 PENALTY PARAMETER » 1.000-01
Charwe 'n Jooshn verg & 1.4781K-02
Changs tn wultipliors & 1.42068-02
Cormtraint viglatien » 2.76708-06

Muitiplior satimates

1.001602TH400 S .320R0150-01 5. 6100085801 7.89932088-01
COMPLETION FULL reguested ss frem nem.
ttn Napt Nind Sint.Objeative lﬂj doen NIB
| -1 ¢ L.6TON308E00 | L] 7
[] 4 1.470080348400 “ [1] 7
7 |] 0 2.470088010%00 b4l (%] 7
[]] 8 2.67009244K00 ™ TR 7
L . 0 L.07009700E400 v ?
Itn Nopt Nind Sinf.Objestive Hehj Heen HIB
19) 8 2.47T009NTHNG " a7 7
"] 8 L.ATHSTATREE 100 9 7
Optinel svhprebles at ainer 1in 7 -~ Tetal itm ® 1"
START OF WAJCR ITH & PUNALTY PARMETSR = $.088%0¢
tharge in Joeshn veary = 1. .52510-02
Chorpe In sultipliors » 5.72512-03
Cormtraint vielation » 2.81708-0
Multiplior entisetes
1.01063002%06 9. JI9315VE-Y L. IVEAIVE-HY T.MIGHITH-AY
Itn Nepk Mind Sinf.Objestive Heki HNewn N3G
Bl L] P Z.470097640%00 118 103 ?
Optimel subproblam ot ainer itn 1 - Total itrm = 12
START OF MAJOR ITH S PENALTY PARAMEITER = . RN
Charpe in Josshn varg & 4. 01118-00
Charme In multiplioes = 9.60708-07
Comireint vielation n 1.43588-1)
nmultipiter sstisntes
101043500500 9. 31932820-01 5.5924040E-01 7. 92160 708-01

1
DAT - OPTINAL BOLUTION FOUND
NEM GASIS FILE saved en file 1 Itne 12

Mejor,; Mrar ‘tre 113
Ohjentive furwtian .tnmmmou
FUNDRS, FUNCEM ealls 1"e 193
Superbeaies: Hera 06 T t.420-09

Marm X, Hore ML +.538°00 7.6010408

l:-inlnt vislation 1.438-13 1.908=-14
Selution printed

PN salled nith MOTATE = ¢

FUiOB) salled with NOTATE = 2

7. 3521871801

7. 3593361 E-01

T7.30000530-41

7.30200028-41

7.

7.1.

SYSTEM INFORMATION

Distribution Files

The MINOS source code and test problems are distributed as a set of Fortran and data files.

o For installation instructions, please see file miminos.doc.

¢ Certain other *.doc files give information for specific machines.

¢ File readme lists changes not documented elsewhere.

Troubleshooting

If you encounter difficulty with compiling or linking, please check the following items. The Fortran
files are referred to here by names of the form *.for. (On Unix systems, they are renamed *.f.)

Most current machines require double-precision arithmetic. Check that the Fortran files use

appropriate declarations. For example, file mi00main.for should contain the line
implicit double praecision (a-h,o~2)

Single precision is correct on a few machines (notably Cray and Convex). These use
implicit real (a-h,o-z)

throughout.

File miOOmain.for declares an array z(nwcore) for MINOS to use as workspace. Make
nucore as large as possible, bearing in mind the maximum problem size that is likely to be
encountered. Very roughly, linear programs with m rows may require nwcore > 100m.

File miOSfuns . for contains nonlinear function routines for the supplied test problems. Use
this file initially to run the test cases, but replace it later with your own functions.

. On most machines, use file mi10unix.for. Check a few machine-dependencies in the fol-

lowing subroutines. The requirements are described in the source code.

miopen opens files.

miinit sets the machine precision, aps. Typically 2-5% = 2,22d-16 in IEEE arithmetic.
micpu calls the system timer. On some Unix systems, the timer is etime. If the name is
unknown, set time = -1.0 as shown in the source code.

. For DEC OpenVMS systems, use file mi1Ovms.for. All machine-dependent subroutines are
ready to go. In addition, minoa2 uses dynamic memory allocation.

. In file mi36inpt.for, subroutine m3hash is suitable for most machines. In rare cases it may
need to be altered if MPS data files are not input correctly. Again, the requirements are
described in the source code.

76

7.2. Source Files

The Fortran source code is divided into several files, each containing several subroutines or func-
tions. The naming convention used should minimize the risk of a clash with user-written routines.

miOOmain.for Main program for Stand-aione MINOS.
Program MINOS

mi0Sfuns.for Function routines for test problems.
funobj funcon matmed
t20bj t3obj tdobj t4con tSobj técon tTobj

miiQunix.for Machine-dependent routines. (Use miiQvas.for for OpenVMS.}
minoss minosl minos2 mineos3d
mifile mispec misolv
miclos mienvt miinit
micpen mipage mitime witimp micpu

miiSblas.for Basic Linear Algebra Subprograms (a subset).
dasum daxpy dcopy ddot dnrm2 dscal idamax
These routines are members of the Level 1 BLAS (Lawson, et al., 1979). It may be possible to replace
them by versions that have been tuned to your particular machine.

Single-precision versions of MINOS use sasum, saxpy, etc.

dddiv ddscl dload dnormi

heopy hload icopy iload iloadl

These are additional utility routines that could be tuned to your machine. dload is used the most,
to set a vector to zero.

mizoamat.for Core allocation and constraint matrix routines.
m2core m2amat m2aprd m2aprl m2aprb
m2crsh m2scal m2scla m2unpk matcol

mi25bfac.for Basis factorization routines.
m2bfac m2bmap m2belm m2bsol m2sing
luifac luifad lulgau luimar lulpen
luimax luiori lulor2 1luloer3 lulor4
luipql 1luipq2 luipq3 lulrec
luSchk lu@sol lu7add luTelm 1lu7for lu7zap luBrpe

mi30spec.for SPECS file inpat.
miopt miopti mioptr m3char m3dflt wm3key
n3file oplook opnumb opscan optokn opuppr

nidsinpt.for MPS file input.
m3getp m3hash m3imov
m3inpt m3mpsa m3mpsb a3mpsc m3read

mi40b2il.tor BASIS file input/output and SOLUTION printing.
m4getdb méchek méid méname m4inat miload méoldb
mdsavb mé4dump ménewb mdpnch mirc néinfs
mérept mésoln m4solp méstat

miS0lp.for Primal simplex method.
m5bsx mbchzr mbdgen méirmc mEhs mblog mElpit
mbpric mbrc nSsetp mbsetx mbsolv

7. SYSTEM INFORMATION 77

ni60srch.for Linesearch and function evaluation.
médmmy @éfcon méfecbj méfun méfuni mégrd mdgrdl
médobj médcon mBsrch srche srchq

ni€Srmed.for Maintaining the quasi-Newton factor R
mébfgs m6bswp méradd mbrend mérdel
mérmod mérset mérscl méswap

niTOnobj.tor Nonlinear objective; reduced-gradient algorithm.
n7bsg m7chkd m7chkg ®7chzq w7fixd
nTrg n7rgit m7sdir m7sscv

mi8Oncon.for Nonlinear constraints; projected Lagrangian algorithm.
mBajac mBaugl mBaugl m8chkj m8prtj m8scl]
mBsetj mB8viol

minosl.for For installations solving linear programs only.
Program MINOSL
funobj funcon etc. (dummy entries)

The last file minosl.for is inciuded as a substitute for files miOOmain.for, mi60srch,for,
216Srmod.for, ni70nobj .for, mis0ncon. for, if MINOS is to be used to solve linear programs
only. It reduces the compiled code size by about 100K bytes. It is recommended for use on
microcomputers and machines that do not have virtual memory.

7.3. COMMON Blocks

Certain Fortran COMMON blocks are used in the MINOS source code to communicate between
subroutines. Their names are listed below.

nienv mieps sifile misavz mitim mivord

m2file m2len m2lui m2lu2 m21lud m2lu4 m2mapa m2mapz
m2parm

m3len nidloc wimps! n3nps2 mimps3 ndnpsd m3apst m3scal
mElen mEloc mbfreq mbini mblobj mElogl mblog2 mblogd
mblogd mSlpl nblp2 mbprc mEstep mbtols

m7len m7loc m7cgl a7cg2 m7cony m7phes nmTtols

m8len m8loc n8alil m8al2 p8diff mBfunc mBsave mBveri
cyclel cycle2 cyclem

A complete listing of the COMMON blocks and their contents appears in subroutine minos3. (Also
see Section 2.6.) It may be convenient to make use of these occasionally; for example,

common /mi1file/ iread,iprint,isumm

gives the unit numbers for the PRINT file and the SUMMARY file.

As supplied, MINOS does not use blank COMMON. However, in some installations it may be
desirable to store the workspace array Z there.

Revision

Pages 78-81 are intentionally omitted in this version of the manual.

82

7.5. Subroutine Structure

The following picture illustrates the top levels of the subroutine hierarchy for Stand-alone MINQS
and for user programs that call subroutine minoss.

MINQS USER
main program main program
! !
minosi mispec

minoss
I
minos2
|
minos3
1
mn3dflt m3d1lt
m3inpt
misolv misolv
I_ |
1
négethd
matmod
m8chkj
m7chkg
m4chek
nbsolv
1
mbdgen
m8setj
a2bfac
nbirmc
nbsetp
mbpric
mblpit
aTrgit
mbsetx
nénewd

1. For Stand-alone MINOS, minost reads the SPECS file. For each begin—end sequence found,
it allocates storage and calls minos2,

2. In some implementations (e.g. file mi10vms.for), minos2 expands the work array z(*) if
necessary. It then calls minos3 to finish processing the current problem.

3. minos3 reads an MPS file, loads a basis file (if any), and checks gradients. According to the
Cycle limit, it then solves one or more related problems.

4. For User programs, mispec reads a SPECS file (if any). It must be called before minoss,
even if no SPECS file is provided.

7.6 Test Problems 83

7.6 Test Problems

Test Problem MANNE

This is a small example of an economic model due to Manne (1979). It has a nonlinear objective
function, 10 nonlinear constraints, 10 linear constraints, and 30 variables. The nonlinearities are
defined by the default function routines FUNOBJ and FUNCON in the MINOS source code. The
starting point given in the MPS file is intentionally close to the optimum solution, to make this
an inexpensive test problem. Other values in the INITIAL bounds set can be tried.

As supplied, FUNOBJ and FUNCON compute all gradients analytically if the SPECS file specifies
DERIVATIVE LEVEL 3. For test purposes, the first three nonzero gradients in each routine are not
computed if DERIVATIVE LEVEL = 0. We give a summary of the output produced by MINOS for
the latter case. A full listing appears in section 8.4.

For this and later examples, the results were obtained on an IBM 3081 using the Fortran H
Extended {Enhanced} compiler with optimization level OPT=3.

Maximum objective value: 2.67009603
Iterations to get feasible: 1

Total iterations: 14

Major iterations: 3
Evaluations of F{z) and its gradient: 21
Evaluations of f(z) and its Jacobian: 24

Nuraber of superbasics at optimum: 7

CPU time (IBM 3081): 0.3 seconds

The Weapon Assignment Problem, WEAPON

This problem has a nonlinear objective function and linear co nstraints. [t is described by Bracken
and McCormick (1969) and Himmelblau (1972). The constraint matrix is 12 x 100 and all 100
variables occur nonlinearly in the objective function F(z). The latler depends on 12 data cards
which are read during the first eniry to subroutine FUNOBJ.

The following are some solution statistics, obtained by MINOS on an 13M 3081 as noted
above. They give an indication of the eflort required Lo solve the problem. llowever, one should
not expect to obtain identical resuits on some other machine.

Minimum objective value: ~1735.56958
Iterations to get {casible: 3
Total iterations: 120
Evaluations of F(z) and its gradient: 270
Number of superbasics at optimum: 18

- CPU time (IBM 3081): 2 seconds

84 7. System Information

Test Problem ETAMACRO (linear version)

This is one example of the energy model developed by Maane (1977). The constraint matrix is
401 X 689. To obtain a linear problem, we have included one linear objective row OPTIMALG in
the MPS file. The latter also contains one right-hand-side vector RHS00001, and one bounds set
BOUNDSO1.

The objective row OPTIMALG contains the optimal gradient values for the 80 nonlinear vari-
ables in the original (nonlinear) form of ETAMACRO. Hence the linear version of the problem has
the same optimal dual variables x as the noniinear version (but rather different primal variables
z).

The file ETAMACRO SPECS is set up to solve this linear program first. It asks for the linear
variables and constraints to be scaled. (Note that it also asks for a BASIS map to be saved on
unit 11 every 100 iterations. This may be used as a starting basis for the nonlinear version of the
problem.)

Typical solution statistics follow.

Maximum objective value: 755.715213
Iterations to get feasible: 240
Total iterations: 904
CPU time (IBM 3081): 15 seconds

Test Problem ETAMACRO (nonlinesr version)

The objective function for the original form of the energy model is entirely nonlinear, and involves
the first 80 variables. It is defined by subroutine FUNOBJ in file ETAMACRO FORTRAN. It depends
on 3 data cards which are inciuded at the end of file ETAMACRO SPECS and are read during the

first entry to FUNOBJ.
The MPS file docs not initialize any of the nonlinear variables. When started from the optimal

solution to the preceding linear problem, typical solution statistics (with scaling requested) are
as lollows.

Maximum objective value: 1337.72488
[terations to get feasible: 0

Total iterations: 235
.Evaluations of F(z) and its gradient: 444
Number of superbasics at optimum: 28

CPU time (IBM 3081): 7 seconds

From a cold start, with and without scaling, typical statistics are as follows.

SCALE YES SCALE NO

Maximum objective value: 1337.72468 1337.72468
Iterations to get feasible: 235 213

Total iterations: 1022 1267
Evaluations of //(z) and its gradient: 1271 1554
Number of superbasics at optimum: 28 28

CPU time (IBM 3081): 21 seconds 26 seconds

7.6 Test Problems 85

8. EXAMPLES

The following sections define some example problerns and show the input required to solve them
using MINOS. The last example in section 8.4 is test problem MANNE as supplied on the
distribution tape. For this example we also give the output produced by MINOS.

As the examples show, certain Fortran routines may be required to run a particular problem,
depending on the problem and on the Fortran installation:
e A main program to allocate workspace
¢ Subroutine FUNOBJ to define a nonlinear objective function (if any)
e Subroutine FUNCON to define nonlinear constraint functions (if any)
e Subroutine MATMOD for special applications

The following input items are always required:

e A SPECS file
e An MPS file

Additional input may inctude a BASIS file and data-read by the Fortran routines.

Load modules and file specifications are inevitably machine-dependent. A resident expert
will be needed to install MINOS on your particular machine and to recommend job control or
operating system commands. On some machines it will be possible to run linear programs through
MINOS without compiling any routines or linking them to the MINOS code file. For nonlinear
problems, some compilation and linking is unavoidable,

For some installations it may also be convenient to have your own copy of subroutine MIFILE,
to define certain file attributes in (non-standard) Fortran, rather than via operating system
commands. The resident expert will know best.

Good luck! We hope the examples that follow are general enough to set you on the right
track.

86 8. Examples

8.1 Linear Programming

One of the classical applications of the simplex method was to the so-called diet problem. Given
the nutritional content of a selection of foods, the cost of each food, and the consumer’s minimum
daily requirements, the problem is to find the combination that is least expensive. The following
example is taken from Chvital (1983).

minimize ¢Tz subjectto Az 25, 0Lz< 1,

b
where 110 205 180 160 420 260 2000
A= 4 32 13 8 4 114} b=(55).
9 12 54 285 22 80 800

and

c=(3 24 13 9 20 19)T, u=(4 3 2 8 2 2)

Main program (not needed for some installations)

DOUBLE PRECISION Z(10000)

DATA NWCORE/10000/
c

CALL MINOS1(Z,NWCORE)

eTopP

END

Dummy user routines (not needed for some installations)

SUBROUTINE FUNOBJ
ENTRY FUNCON
ENTRY MATNOD
RETURN

END

SPECS File

BEGIN DIET PROBLEM
MINIMIZE
ROWS
COLUMNS
ELEMENTS

8883

SUMMARY FILE

SUMMARY FREQUENCY

NEW BASIS FILE 11
END DIET PROBLEM

+ (for small problems only)

[y

8.1 Linear Programming 87
MPS File
NAME DIET
ROWS
G ENERGY
G PROTEIN
G CALCIUM
N COST
COLUMNS
OATMEAL ENERGY 110.0 PROTEIN 4.0
OATMEAL CALCIUM 2,0 COST 3.0
CHICKEN ENERGY 205.0 PROTEIN 2.0
CHICKEN CALCIUM 12,0 COsT 2¢4.0
EGGS ENERGY 180.0 PROTEIN 13.0
EGGS CALCIUM 54.0 cosT 13.0
MILK ENERGY 180.0 PROTEIN 8.0
MILK CALCIUM 285.0 COsT 9.0
PIE ENERGY 420.0 PROTEIN 4.0
PIE CALCIUM 22.0 cosT 20.0
PORKBEAN ENERGY 260.0 PROTEIN 14.0
PORKBEAN CALCIUM 80.0 cosT 19.0
RHS
DEMANDS ENERGY 2000.0 PROTSIN 55.0
DEMANDS CALCIUM 800.0
BOUNDS
UP SERVINGS OATMEAL 4.0
UP SERVINGS CHICKEN 3.0
UP SERVINGS EGGS 2.0
UP SERVINGS MILK 8.0
UP SERVINGS PIE 2.0
UP SERVINGS PORKBEAN 2.0
ENDATA

Notes on the Diet Problem

1. For small problems such as this, the SPECS file does not really need to specify certain
parameters, because the default values are large enough. However, we include them as a
reminder for more substantial models.

2. In the MPS file we put the objective row last. Looking ahead, this is one way of cnsuring
that it does not get mixed up with nonlinear constraints, whose names must appear first in
the ROWS section.

3. The constraint matrix is unusual in being 100% dense. Most models have at least a few
zeros in each column and in b. They would not neced to appear in the COLUMNS and RHS
sections.

4. MINOS takes three itcralions to solve the problem. The optimal objective is eTr = 02.5.
The opiimal solution is z = (4, 0, 0, 4.5, 2, 0)7 and & = (0, -5, -534.5)7. The optlimal
dual variables are 7 = (0.05625, 0, 0)7.

88 8. Examples

8.2 Unconstrained Optimization

The following is a classical unconstrained problem, due to Rosenbrock (1960):

minimize F(z) = 100{zz —z})® + (1 - z1)3.

We use it to illustrate the data required to minimize a function with no general constraints.

Bounds on the variables are easily included; we specify —10 < z; < § and —-10 < z3 < 10.

Calculation of F(z) and its gradients

SUBROUTINE FUNOBJ(MODE, N, X, F, G, NSTATE, NPROB, Z, NWCORE)
IMPLICIT REAL*8 (A-H, 0-2)
DOUBLE PRECISION X(N), G(N), Z(NWCORE)

c
¢ ROSENBROCK'S BANANA FUNCTION.
C
X1 a X(1)
X2 = X(2)
T1 = X2 - Xiss2
T2 = 1.0 - X1
F = 100.0 % Tiss2 + T2e*2
G(1) = - 400.0 *+# T1 » X1 - 2.0 + T2
G(2) = 200.0 * T1
RETURN
c
c END OF FUNOBJ FOR ROSENBROCK
END
SPECS File

BEGIN ROSENBROCK
OBJECTIVE = FUNOBJ
NONLINEAR VARIABLES 2
SUPERBASICS LIMIT 3

LOWER BOUND -10.0
UPPER BOUND 10.0
SUMMARY FILE 9

SUMMARY FREQUENCY b
ITERATIONS LIMIT 50
END ROSENBROCK

8.2 Uncoastrained Optimization 89

MPS File

NAME ROSENBROCK
ROWS
N DUMMYROW
COLUMNS
X1
X2
RHS
BQUNDS
UP BOUND1 X1
FX INITIAL X1 -1.
FX INITIAL X2
ENDATA

- =,
owo

Notss on Rossnbrock’s function

L.

10.

There is nothing special about subroutine FUNOBJ. It returns the function value F{z) and
two gradient values g, = 9F /3z; on every entry. If (1) or G(2) were not assigned values,
MINOS would “notice” and proceed to estimate either or both by finite differences.

The SPECS file apparently does not need to estimate the dimensions of the constraint matrix
A, which is supposed to be void anyway. But in fact, MINOS will represent A as a 1 X ny
matrix containing n; elements that are all zero. For very latge unconstrained problems, the
COLUMNS and ELEMENTS keywords must be specified accordingly.

The SPECS file must specily the exact number of nonlinear variables, ny. To allow a little
elbow room, the SUPERBASICS LIMIT must be set to ny + 1, unless it is known that some of
the bounds will be active at the solution.

. The MPS Rle must specify at least one row. Here it is & dummy free row (type N = non-

binding constraint). The basis matrix will remain B = 1 throughout, correspoading to the
slack variable on the free row.

_ The COLUMNS section contains just a list of the variable names. The RHS header card

must appear, but a free row has no right-hand-side entry.

. Uniform bounds ~10 < z; < 10 are specified in the SPECS file as a matter of good practice.

Their presence does not imply additional work. If the LOWER and UPPER BOUND keywords did
not appear, the variables would implicitly have the bounds 0 < z; < oo, which will not
always be appropriate.

. With the uniform bounds specified, only one additional card is necded in the BOUNDS section

to impose the restriction zy < 5.

. The INITIAL bound set illustrates how the stacting point (z1,2q) == (—1.2,1.0) is specilied.

These cards must appear at the end of the BOUNDS section. Since the SUPERBASICS LIMIT
is sufficiently high, both variables will initially be superbasic at the indicated values.

. If the INITIAL bound set were absent (and if no BASIS file were loaded), z; and z3 would

initially be nonbasic at the bound that is smaller in absolute value (with ties broken in favor
of lower bounds); in this case, z) = 31 = 5 and zg = Iz = —10.

From the standard starting point shown, a quasi- Newton method with a moderately accurate
linesearch takes about 20 iterations and 60 function and gradient cvaluations to reach the
-unique solution zy = z3 = 1.0.

%0 8. Examples

8.3 Linearly Constrained Optimization

Quadratic programming (QP) is a particular case of linearly constrained optimization, in which
the objective function F(z) includes linear and quadratic terms. There is no special way of
informing MINOS that F(z) is quadratic, but the algorithms in MINOS will tend to perform more
efficiently on quadratics than on other nonlinear functions. The following items are required to
solve the quadratic program

minimize F(z) = -lz-zTQz +cTz subjectto Az <bh z2>0

for the particular data

4 2 2 -8
Q=(24t0, c=(4) A=(112), b=3
2 0 2 -4

Calculation of quadratic term and its gradients

SUBROUTINE FUNOBJ(MODE, N, X, F, G, NSTATE, NPROB, Z, NWCORE)
IMPLICIT REAL#*8 (A-H,0-2)

DOUBLE PRECISION X(N), G(N), Z(NWCORE)

COMMON /QPCOMM/ Q(50,50)

Computation of F = 1/2 x'Qx, g = Qx.
The COMKON statement and subroutine SETQ are problem dependent.

aGaOaan

IF (NSTATE .EQ. 1) CALL SETQ(Q, 50, N)
F = 0.0

DO 200 I =1, N
GRAD = 0.0
DO 100 J =1, N
GRAD = GRAD + Q(I,J)*Xx(J)
100 CONTINUE
F
G(I)
200 CONTINUE

F + X(I)*GRAD
GRAD

¢
F = Q.5»F
RETURN

c END OF FUNOBJ FOR QP
END

8.3 Linearly Constrained Optimization 91
SPECS File
BEGIN QP
NONLINEAR VARIABLES 3
SUPERBASICS LIMIT 3
SUMMARY FILE g
SUMMARY FREQUENCY 1
ITERATIONS LIMIT 50
END QP
MPS File
NAME QP
ROWS
L A
N C
COLUNNS
XL A 1.0 c -8.0
X2 A 1.0 c -8.0
X3 A 2.0 ¢ -4.0
RHS
B A 3.0
ENDATA

Notes on the QP example

1.

In subroutine FUNOBJ we assume that the array Q{»,s) is initialized during the first entry
by another subroutine SETQ, which is problem-dependent. The COMMON statement is also
problem-dependent and is included to ensure that Q will retain its values for later entrics. {In
some Fortran implementations, local variables are not retained between entries.)

. The quadratic form will often involve only some of the variables. In such cases the variables

should be ordered so that the nonzero rows and columns of @ come first, thus:

()

. The parameter N and the number of NONLINEAR VARIABLES would then be the dimension of

Q.

. FUNOBJ could have computed the linear term ¢Tz (and its gradient ¢). However we have

included ¢ as an objective row in the MPS file, in the same manner as for linear programs.
This is more general, because c could contain entries for all variables, not just those associated

with §.

. Beware—if ¢ 5 0, the factor } makes a vital difference to the function being minimized.
. The optimal solution to the QP* problem as stated is

z = (1.3333,0.77777,0.44444), %zTQz =82222, cTz=—1T111 F(z) = —8.8888.

7] 8. Examples

Test Problems WEAPON and ETAMACRO

The MINOS distribution tape contains data for these two linearly constrained problems. The
SPECS file for ETAMACRO is as follows. It is set up to solve a linear form of the probiem frat,
and then use the optimal basis as a starting point for the noalinesr form.

BEGIN ETAMACRO AS AN LP PROBLEN.

MAXINIZE
OBJECTIVE = OPTIMALS
RONS 500
CoLUMNg 700
ELEIENTS 2600
SUMMARY FILE L J
"PS FILE te
NEM BASIS FILE 11
SCALE YES
“n:nmm 1000
BSEGIN ALAN MANMNE'S ENEWNSY MODEL ETAMACRO
ntoanize
OBJECTIVE = PUNDBJ
RONS s50¢
COLUMNS 700
ELEMENTS 2600
SNTARY FILE ’
"rs FILE 10
OLD BASIS FILE 1"
NEM BASIS FILE 12
NONLINEAR VARIABLES s
SUPERBASICS LIMIT 9
9CALE YES
- ITERATIONS 2000

L]
% NOTE -- AFTER THIS SPECY PILE THERL ARE 3 CARUS OF DATA,
s TO BE WEAD ON THE FINST ENTRY TO SUBROUTINE FUNDB..

END
1.160 1.446 1.7 t.03¢ 2.364 2.740 3.101 3.508

3.873 4.7 8. 72 5.213 $.755 6.354 7.016 7.7%6
10.000 0.200 0.400 6.333380 0.800

Linear Least Squeres
Data-fitting can give rise to & constrained linear least-squarcs problem of the form

minimise || Xz —ylls subjectto Az 24 <7z < s

This problem may be solved with MINOS as it stands, by coding subroutine FUNOBJ to compute

the objective function F(z) = }|| Xz - ||} and its gradient g(z) = X TN Xz-y) If X is a sparse

matrix, it may be more convenient to express the problem in the form

T,

I X =
minimize F(r) = %r r subject to (A)(;) > (:), r free, I <z< 5.

8.3 Linearly Constrained Optimization 93

Notes on the least-squares problem

. As usual, the constraints in Az > b may include all types of inequality.
. 7 =y — Xz is the residual vector and r7r is the sum of squares.
. The objective function is easily programmed as F(r) = }rTr and g(r) = r.

Ll . o I

More stable methods are known for the least-squares problem. If there are no constraints at
all, several codes are available for minimizing || Xz — y||z when X is either dense or sparse.
When there are equality constraints only (Az = b), we know of one specialized method that
can treat X and A as sparse matrices (Bjorck and Duff, 1980). For the mote general case
with inequalities and bounds, MINOS is one of very [ew systems that could attempt to solve
problems in which X and A are sparse. However, il n (the dimension of z) is very large,
MINOS will not be efficient unless almost n constraints and bounds are active at the solution.

5. If it is expected that most of the elements of z will be away from their bounds, it wiil be
worthwhile to specily MULTIPLE PRICE 10 (say). This will allow up to 10 variables at a time
to be added to the set currently being optimized, instead of the usual 1.

The Discrete {; Problem

An apparently similar data-fitting problem is
minimize || Xz —yll; subjectto Az > b

where {|rlli = X |r:|- However, this problem is best solved by means of the lollowing purely
linear program:
mm)fimi:e yTN+ 5T
) 4

subjectto XA+ ATu=0, -1<\<1, w>0.

Notes on the {; problem

1. The solution z is recovered as the dual variables, i.c., the Lagrange muitipliers associated
with the general constraints.

2. The optimal value of || Xz — y||; is the sum of the absolute values of the reduced costs
associated with). (It is also the maximal value of yTX + 5Tp.)

3. If a particular row in Az > b is required to be an cquality constraint, the corresponding
component of u should be a [ree variable.

4. It does not appear simple to include the bounds | € z < u cxeept as part of Az > b If
there are many finite bounds, it may be best to solve the oru,umi probletn directly as a lincar
program, thus:

minimize eTr+¢Ts
rs

Af\> (b
subject to (I _g X)(:);(y)' r, 320, 1<z <y,

_where eT = (11...1).

1]

8. Examples

8.4 Nonlinearly Constrained Optimization

Two example problems are described here to illustrate the subroutines and data required to specify
a problem with nenlinear constraints. The first example is small, dense and highly nonlinear; it
shows how the Jacobian matrix may be handled most simply (as a dense matrix) when there are
very few nonlinear constraints or variables. The second example has both linear and nonlinear
constraints, and illustrates most of the features that will be present in large-scale applications
where it is essential to treat the Jacobian as a sparse matrix.

Problem MHW4D (Wright (1978), example 4, starting point D)

minimize (z) — 1) + (z1 — 22)? + (22 — 23)° + (23 = 24)* + (24 - zg)!

subject to =y + 3 + 2} = 3V2+32,
Ze— 23 + 2, =222,

TL1Zg — 2.

Starting point: zo = (-1,2,1,-2,-2)

Notes for problem MHW4D

1.

The function subroutines include code for a second problem {Wright, 1976, example 9). The
parameter NPROB is used to branch to the appropriate calculation.

In subroutine FUNGBJ, F is the value of the objective function F(z) and G contains the
corresponding & partial derivatives.

. In subroutine FUNCON, F is an array containing the vector of constraint functions f{z), and

G holds the Jacobian matrix; thus, the i-th row of G contains the partial derivatives for the
i-th constraint. In this example the Jacobian is best treated as a dense matrix, so G is a
two-dimensional array. Note that several elements of G are zero; they do not need to be
explicitly set.

_ Subroutine FUNCON will be called before subroutine FUNOBJ. The parameter NSTATE is used

to print a message on the very first entry to FUNCON. ‘This is just a matter of good practice,
since it is often convenient to compile MINOS and the function routines into an executable
code file, and one can easily forget which particular function routines were used.

. The SPECS file shown contains keywords that should in general be specified for small, dense

problems (i.e., ones whose default values would not be ideal).

. The COLUMNS section of the MPS file contains only the names of the variables, since they

are all “nonlinear”, and because there are no lincar constraints.

. The BOUNDS section specifies only the initial point. Uniform bounds on the variables are

given in the SPECS file.

. Since FX indicators are used for the INITIAL bounds, the SUPERBASICS LIMIT needs lo bc at

least 5 in this case, plus 1 for elbow room during the optimization.

. This example has several local minima, and the performance of MINOS is very dependent on

the initial point zo. See Wright (1978) or Murtagh and Saunders {1982) for computational

‘ details.

8.4 Noplinearly Constrained Optimisation s

Problem MHW4D; computation of the objective function

SUBROUTINE PUMOBJ(MODE,N,XiF,6sNSTATE ,NPROB, Z,NNCORE)
INPLICIT REAL#B(A-H,0-T)
DOUBLE PRECISION X(IN),GIN),Z(NWCORE)

i &

o

IF (NFROB .NE. 4) 80 TO 500
Tt = X(1) - 1.0
T2 = X{(1) - X(2)
T3 2 X(2) - X(3)
T4 2 X(3) - X&)
T3 = Xi4) ~ ALB)

[I B |

r T TINng ¢ TIAag & TIMRZ + T4uu4 & TEwne
6(1) = 2.0W(T1 + T2}

GL2) = -2.08T2 + 3,.0uT3ung

6(3) 3 =3.0uTInug 4 & OnT4nn}l

G(4) T -4 ONTANNT ¢ 4. 08TSMAS

G(5) & <4 QWTSua} ’

RETURN

el

0oaoo0n

500 TY = DSINIX(3Z) - X(3))
T¢ 3 DCOSIX(S) = X(3))
r = 10,09X(1)0XI4) + XI1)003 # XI(2] - 6.09X(2)0ug » X(3)
1 * 9.ONTY ¢+ X(210u3 # X(alwal & X5)4
SL1) = 10.08%(4) * 3.0wx(i)ung » X(2)
8(2) = X(1)uus - 12.0uX(E)WX(3)
1 ¢ 3.0ux(2)Weg # X(4)ma2 @ X(3)un4
S(3) = 6. 08X(2)uu2 ~ 9,007
() 2 10,0MX(1) & 2. 0mX(Z)un3 & X(4) » X(5)uu4
G(S) 3 9.00T2 ¢ 4.0uX(2)003 ¥ X(4)ung ¥ X(5)en3

RETURN

<

c END OF FUNORJ FOR MBRADY
END

% 8. Examples

Problem MHW4D; computation of the constraint functions

SUBROUTINE FUNCON(MODE M N NJAC: X+ P+ 8, NSTATE ,NPROB» Z, NNCORE)
IMPLICIT REALMALA-H,0-Z)
QOUBLE PRECISION XINI,FUM),8(M:N),Z(NNCORE)

c

¢ el 4

c
IF (NSTATE .EQ. 1) MRITE(4, 1000) NPROB
IF (NPROB .NE. 4) %0 TO 500
FLY) = X(1) ¢ X(ZiwwR ¢ X(3)un3
8(1,1) = 1.0
gt1,2) 3 2.0uX(2)
Gl1,3) = 3.0uX(3)ung

14
F(2) 3 X(2) = X(I)muE + X&)
st2,2Y 2 1.0
S(2,3) = -2.0"X(3)
$12,8) 3 1.0

c
F(3) = X01)W(5)
6(3,1) = X(5)
(3,5} 2 X(1)
RETURN

c

g L

$00 F(1) ® X(1)eug ¢ X(Z}HRE ¢ X(3)mag & X{4)weR & X(5)2

Gl1,1) = 2.0mX(1)
6l1,2) = 2.0%X(2)
6(1,3) = 2.0WX13}
GL1,4) = 2.00X(A)
61,5) = 2.0%XL3)

¢
FIZ) & XU1IWNZWXI3) ¢ NLA)WXLS)
SIZ,1) = 2.08XL1 WKL)
S(L,3) = X(11Wnd
$12,0) = X(3)
8(2,5) = X(&)

c
P(31 ® X(2)uaRuX(4) ¢ 19.0%X(1)0U D)
8(31) & 10.09X(I5)
G(3.2) 5 Z.0EX(2IWN(A)
813,43 & XIT)eNE
$(3.8) = 1.0}
RLTUMN

e
1088 FORMAT(/ 36N THIS IS PROBLEM MHMOANDY. NPROB T, I3)
c ::: OF PUNCON FOR MOMRANDY

8.4 Nonlinearly Constrained Optimisation

Problem MHW4D; the SPECS file

BEGIN MM &
PROBLENM MABER

.
NONLINEAR CONSTRAINTS 3
NONLINEAR VARIABLES L]
JACOBIAN DENSE
UPPER BOUND 3.0
LONER BOUND -5.0
SUMMARY FILE ’
ITERATIONS 100
MAJOR ITERATIONS ty
HINOR ITERATIONS 10
PENALTY PARAMETEN t.0
SUPERBASICS LIMIT ¢
PRINT LEVEL (JFLXB) 10%
VERIFY LEVEL]

D " &

Problem MHW4D; the MPS file

NAME N A0
ROWS
€ CONt
€ CONZ
g CoM3
COLLMNS
Xt
Xz
x3
xe
b
L
ms oM 6. 24243
s CoNg 0.52842
s coN3 2.0
BOUNDS
X INITIAL X3 -1.0
FX INITIAL X2 2.0
FX INITIAL X3 1.9
PX INITIAL X& -t.9
FX INITIAL X3 -2.9

ENDATA

98

8, Examples

Problem MANNE (Manne, 1979)

T
maximize Z: Belog C,

tam}
subject to ak? > Co+ 1, 1<tLT, (nonlinear constraints)
Ky K K+ L, 1<t T-1, (linear constraints)

gKr < I,

with various ranges and bounds.

The variables here are K, C: and I;, representing capital, consumption and investment during
T time periods. The first T constraints are nonlincar because the variables K, are raised to the
power b = 0.25. The problem is described more fully in Murtagh and Saunders (1982), where
reaults are given for the case T = 100.

The main program and subroutines shown on the following pages are part of the file HEAD1

on the MINOS distribution tape (see sections 7.1 and 7.4). The SPECS data and MPS data are
contained in the file MANNE DATA; they apply to the case T = 10.

Notes for problem MANNE

1.

For efficiency, the Jacobian variables K, are made the first T components of z, followed by
the objective variables C,. Since the objective does not involve K, subroutine FUNOBJ must
set the first T components of the objective gradient to zero. The parameter N will have the
value 27, Verification of the objective gradients may as well start at variable T + 1.

. For subroutine FUNCON, N will be 7. The Jacobian matrix is particularly simple in this

example; in fact J(z) has only one nonzero element per column (i.e., il is diagonal). The
parameter NJAC will therefore be T also. It is used only to dimension the array G.

. NSTATE enables B, AT and BT to be initialized on the first entry to FUNCON, for subsequcnt use

in both of the function subroutines. (Remember that the first call to FUNCON occurs before the
first cail to FUNOBJ.) The name chosen for the labeled COMMON block holding these quantities
must be different from the other COMMON names used by MINOS, as listed in section 7.3.

4. NSTATE is also used to produce some output on the final call to FUNCON. i
5. The COMMON block MAFILE is one of those used by MINOS; sce section 1.6. IFor test purposes

we also use COMMON block MBDIFF to access the variable LDERIV.

. The SPECS file uses keywords that you should become familiar with before running large

problems, Other values will be appropriate for other applications.

. The MPS fle specifies a sparse T X 7" Jacobian in the top left corner of the constraint matrix.

Aa arbitrary value of 0.1 has been used for the nonzero variable coefficients. A zero or blank
numeric field would be equally good.

,.

8.4 Nonlinearly Constrained Optimisation

Problem MANNE; main program and caleulation of the objective function

program MINOS

This is the default main program for MINOS.
It provides all of the necessary workspace.
If your compiler wants all common blecks to be in the main pregram
{¢.g. MACFORTRAN), grab them from subroutine misolv in file milOl..

e T — i S - - -

* % 2 % % *

paramater {nweora = 50000)
double precisicn z(nwcore)

call minesl{ z, nwcore)

* end of main program for stand-alonae MINOS.
and

A ALl bbb bk
g 2 B I N e e - reTerr

+

= &
T .

subroutine funcby{ mode, n, x. #, g, nstate, nprob, z, nwcore)

implicitc doublae precision (a-b,o-%)
double precision x(n}, g(n), z(awcore)

----- - -

This is funob) for problem tdmanne.
The data bt (*) is computed by tdcon om its first entry.

For teat purposes, we look at Derivative level
and sometimes pretend that we don’t know the first
three elemants of the gradiant.

- e - —

* % % % % * X X ¥

common /mlfile/ iread,iprint, isuma
common /mBdiff/ difint (2), gdummy, ldariv, 1vldif, knowng (2)
commen /manne / b,at(100) , bt (100)

intrinsic log
logical gknown
paramater { zaro = 0,0d+0)

gknown = lderiv .eq. 1 .or. lderiv .eq. 3
nt = nf2 .
£ = Z&ro

do 50 j = 1, nt
xcon = x(nt+})
£ = f + bt(j) * logixcon)
if (mode .eq. 2) then
g(j) = zerxo
if (gknowm .or. 3 .gt. 3) g(nt+j) = bt()) / xcen
and 1if
50 continue

* end of funobj for timanne
end

100

8. Examples

Problem MANNE; cailculation of the constraint functions

* % B % F % %

* & % 3

*

*

o

subroutine funcon(mode, m, n, njac, %, £. g,
$ nastate, nprob, I, nwcore)

implicit double precision {a-h,o0-2)
double precision x(n), £(m), g(njac), z(nwcore)

This is funcon for problem timanne.

For test purposes, we look at Derivative level
and somatimes pretand that we don’t know the first
three elements of the gradient.

comnon /mlfile/ iread, iprint, isumm
commen /mBdiff/ difint(z),gdnnny.ld.riv,lvldif.kneung{Z)
common /manne / b,at{100),bt (100}

logical gknown
paramatear { cne = 1.0d+0)

gknown = lderiv .ge. 2
nt =n

First entry. Define h, at(*®) and bt{*)
for this and all subsequent antries.

----- o —— -

1f (nstate .eq. 1) then
grow = 0.03

beta = 0,95
xk0 - 3.0

xc0 = (0,95
x1i0 = 0.05
b = 0.25

if (iprint .gt. 0} write({iprint, 1000) nt, b

a = (xc0 + xi0) / xkO**b
gfae = {one + grow)**{one - b}
at {1y = argfac
bt (1) = beta

do 10 § = 2, nt
at (j) = at{}-1)*gfac
bt (3} = bt(j-l)~*bata
10 continue

bt{nt) = bt(nt) / (ona - bhata)
end if

Normal entry.
do 150 4 = 1, nt
xkap = x{3)
£(3) = at(j) * xkap**h -
if (mode .eg. 2) then
1f (gknown .er. 3 .gt. 3) g(3) = b*f(3) / xkap
and if

150 continue

Final entry.

=

if (nstate .ge. 2} then
if (iprint .gt. 0) write{iprint, 2000) (£(3), 3 = 1, nt)

end if
return

1000 format{// ' This is problem t4manne. nt =, 14, ' b=, £8.3)
2000 format(// ' Final nonlinear function valuas’' / (5£12.5))

end of funcon for t4manne
end

8.4 Nonlinearly Constrained Optimisation

101

Problem MANNE; the SPECS file

Begin t4manne (l0-period economic growth model)

Problem number
Maximize

Rows

Columns
Elamants
Upper bBound
Obijective =

Nonlinear conatraintas

1114

100
100
100
100.0
funob3i

10

Nonlinear Jacobian vars 10
Nonlinear cbjective vars 20

MPS file
* New Basis file

Jacobian

Major itarations
Minor iterations
Panalty parameter

Hessian dimension
* Derivative laval
* Verify gradients

Scale option

Iterations

Print level (4flxb)

Print frequency

Summary level

Summary frequency
End MannelO

10
11

Sparse
8

20

0.1

10
[+

50
00000

102 8. Examples

Problem MANNE; the MPS file

NAME MANNELO
ROWS
G MONOO1
G MONOO2
G MOHOO3
G MONGO4
G MONQOS
G MONO0OS§
G MON0O?
G MONOO0S
G MONQOY
G MONOL1O
L CAP0O2
L CRAPOO3
L CAZOO4
L CApPOOS
L CAPOOS
L Cap00?
L CAROOB
L CARQOS
L CaP0lO
L TERMINV
COLUMNS
KAPOOL MONOOL .1 CAPOO1 1.0
KAPOOL CRPOO2 ~1.0
KAPQO2 MONOOG2 -1 CAP002 1.0
KAPOD2 CAP003 ~-1.0
KAR003 MONO0O3 .1 CAPOO3 1.0
KAROO3 CARPOO4 -1.0
KAPQO4 MOH004 .1 CapoC4 1.0
KARP004 CRFO00S -1.0
KAPQOOS MONOOS .1 CARO0S 1.0
KAPOOS CARQOS -1.0
KAPOOE MONOOS -1 CAPDO6 1.0
KAPQOS CAROCT -1.0
KARQO7 MOROOT .1 CAROQ7T 1.0
KapQO7 CAPOO8 -1.9
KARPQOS MONOOS .1 CAROO8 1.0
KAROO8 CAPOO3 -1.0
KAPOOS MONOO9 .1 CAROOQ9 1.0
KAPQO9 CARPO10 -1.0
KAPOlO MOKO10 .1 CAPO10O 1.0
KaP0O1l0 TERMINV .03
CONOOL MONQO1 -1.0
CONOO2 MONO002 -1.9
CONOO3 MONOO3 -1.0
CONGO4 MONCG4 -1.0
CONOOS MONOUS -1.0
CONOOS& MON006 -1.0
CONOO? MONOOQT -1.0
COoNODS MONOOS -i.0
CONO0OD9 MONOQ9 -1.0
CONOL10 MONO10 -1.0
INVOOl MONOO1 -1.0 CAPQO2 -1.0
INV002 MONOO02 =-1.0 CAPCO3 -1.0
INVOO3 MONOD03 -1.0 CARO04 -1.0
INVOD4 MONOO4 -1.0 CAROOS -1.0
INVOOS MONOOS -1.0 CAPOOS -1.0
INVOO6 MONOOS =-1.0 CAR0Q7 -1.0
INVOO07 MON0OO7? -1.0 CaPQOS -1.0
INvoos MONOOS -1.0 CAROO? -1.0
INVOQ9 MONOOY -1.0 CAROLl0D -~1.0
INVO1l0 MONO10 -1.0 CARO11 -1.0
. INVO1Q TERMINV -1.0

8.4 Nonlinearly Constrained Optimisation

108

Problem MANNE; the MPS file, continued

* The RHS

LAGRANGE

LAGRANGE
RANGES

RANGE1
BOUNDS
BOUWD1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND].
BOUND1
BOUND1
BOUND1
BOUND1
BOOUND1
BOUND1
BOUND1
BOUND1
BOUNDL
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
INITIAL
INITIAL
INITIAL
INITIAL
INITTAL
INITIAL
INITIAL
INITIAL
INITIAL
ENDATA

EEESEE555E555558658868866%

KEEEEEEREEEERT RS

is zaro

MONQQ2
MONO1O

MONOLO

KAPOOL
KAP0O2
KAP0O3
KAPGO4
KAPJ03
KAPOOS
KAP0O7
KAPOOS
KAPOOS
KARO10
CONOOL
CONOO02
CONOO3
CONOO4
CONQOS
CONOO6
CONOO?
coNGos
CONRO00Y9
CONO10
INVOOLl
INVOO2
INV003
INVOO4
INVOOS
INVOOSE
INV0O?
INV0OO08
INVOO9
INVO10Q
INVOOS
INVOOS
INVO10
KAPOQ2
KAPO03
KAP0O4
KAPOQS
KAPQOE
FAPOOQ?
KAPQOS
KAPOOS
KAPOL10

-0.9 MONO003
-10.0

.112

.

P R T A e el
=
o

W W Wi w
. . P

-0.8

20.0

104

8. Examples

Problem MANNE; output from MINOS

1

MlEQSs 5.5 (May 1998)

Begin t4manne (10-period aconomic growth model)

Problem number 1114
Maximize

Rows 100
Columns 100
Elements 100
Upper bound 100.0
Cbjective = funobj
Bonlinear constraints 10

Tonlinear Jacobian vars 10
Bonlinear objective vars 20

MPS file 10
¢ New Basis file 11
Jacobian Sparse
Rajor iterations]
Miner iterations 20
Panalty parameter 0.1
Hessian dimension 10
* Derivative lavel 0

Verify gradients

Scals option

Iterations 50

Print level (jflxb) 00000

Print frequency

Summary level

Summary frequency
£nd Mannell

=

Reasonable Vorkspace limits are

Actual Workspace limits are
KPS file
1 NARE NAREELO
2 ROWS
23 COLUNES

o Q

XXXX Warning - no linear objective selected
1XXX HEon-existent row spacified -- CAPOOL
XXXX Bon-sexistent row specified -~ CAPOLL

a5 RHS
&6 .
67 s The RHS is zero
68 L4
XXXX Varning - first XHS is LAGRANGE.
71 RANGES
XIXX Varning - the RHS is zero
73 BOUNDS
118 EEDATA

XXXX Total no. of errors in NPS file

Other

6994
100000 ... 100000 words of =z.

-~ gntry ignored in line 24
-= entry ignored in line a3

BHS’s will be ignored.

8.4 Nonlinearly Constrained Optimization

Tames selected

Objective FUT0BJ {(Max) [}
RHS g
RANGES RAXGEL 2
BOUNDS 80UND1 33
To. of Jacobian sntries spacified 10
Bo. of LAGRANGE entries spacified 3
No. of INITIAL bounds specified 9
fo. of supsrbasics specified 9
Nonzeros allowed for in LU factors 4939¢
Scale option 12, Partial price 1
Partial price sectiom size (A) 30
Partial price section size (I) 20
Matrix Statistics
Total formal Free Fixed Bounded

Rows 20 18 0 0 2
Columns 30 0 [¢) 1 29
No. of matrix elements 59 Density 9.833
Biggest 1.41108+00 (excluding fixed columns,
Smallest 3.0000E-02 free rows, and RHS)
Bo. of objective cosfficients Q
Hanlinaar constraints 10 Linear constraints 10
Nonlinear variables 20 Linear variables 10
Jacobian variables 10 Objective variables 20
Initial basis
o basis file supplied
Scaling

Nin elem Aax slem Hax col ratie
After 0 3.00E-02 1. 41E+00 33.33
Aftsr 1 4.16E-01 2 . 40E+00 5.77
Aftar 2 4.42E-01 2.26K+00 5.12
After 3 4.42E-01 2.26E+00 5.12

Nin scale flax scale Between 0.5 and 2.0
Col 10 4.0E-01 Col 30 2.6E+00 28 93.3
Row 20 1.7E-01 Row 19 1.7E+00 19 95.0
Jorm of fixed columns and slacks 4. 3E+00
(befors and after row scaling) 4. 2E+00

Crash option 2

Crash on linear E rows:

108 8. Examples

Iterations

Crash on linear LG rovs:

Slacks O Freae cols QO Preferrad Q
Unit 10 Doubls 0 Triangls 0 Pad 0o
Itn 1 -- linear constraints satisfied.

This is problem t4manne. nt = 10 b= 0.250
funcon sats 10 out of 10 constraint gradients.
funobj sats 20 cut of 20 objective gradients.

Cheap test on funcon...
The Jacoblian sesms to be OK.
The largest discrepancy vas 6.67E-10 in constraint 2

Cheap test on funobj...
The objective gradients seem to be OL.

Gradient projected in tvo dirsctions 4.00258220426E+00 1.00000000000E+Q0

Difference approximations 4.0025T400842E+00 9.99995843622E-01
Scaling
Min elem Nax elem Max col ratio
After O 3.00E-02 1.00E+Q0 33.33
After 1 4.16E-01 2.40E+00 5.77
After 2 5.08E-01 1.98E+00 3.9
After 3 5.17g-01 1.93E+00 . 3.74
Nin scsle Kax scale Batween 0.5 and 2.0

Col 10 5.0E-01 Col 30 6.TE+00 19 63.3
Row 20 1.1E-01 Row 11 1.6E+00 10 50.0
Sorm of Tixed columns and slacks 1 .8E+00
(before and after rovw scaling) 5.7TE+00
Major minor total ninf step objective Feasible Optimal nsb ncon

1 1T 1 0 0.0E+00 0.00000000E+00 0.0E+00 1.2E+01 8 4
Crash on nonlinear rows:
Slacks 0 Free cols 0 Prefarred 0o
Unit 10 Double 0 Triangle 0 Pad o

2 1 2 0 1.0B+00 2.889TITTAE+00 4.4E-08 7.9E-04 T 6
Completion Full now requested

3 T] 0 1.0E+00 2.67011960E+00 4.7E-06 7.9E-05 7 21

4 2 11 ¢ 1.0E+00 2.85T009683E+00 1.iE-12 1.6K-08 7 26
EXIT ~- optimal solutiom found
Problem name NANNELO
No. of iterations 11 Objective valua 2.6700986272E+00
Bo. of majer iterations 4 Linear objective 0. 00000000C00E+00
Penalty paramater 0.00100¢ Wonlinear ohjective 2.6700988272E+00
Bo. of calls to funobj 27 Bo. of calls to funcon 26
Jo. of superbasics 7 No. of basic nonlinears 18
§o. of degensrate staps 0 Pasrcentage 0.00
Norm of x (scaied} 1.5E+00 Form of pi (scaled) 1.7E+0L
Jorm of x 6 .5E+00 TWorm of pi 7.6E+00
Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(acaled) 22 1.66-08
Max Primal infeas 0 0.0E+00 HMax Dual infeas 22 5.4E-09

Nonlinear constraint violn 1.9E-12

LU penalty BSaep

31 1.0E~01

40 1.0E-0t

40 1.0E-01
40 1.0E-02

0

8.4 Noaligearly Constrained Optimisation 107
NAKE MANNELO OBJECTIVE VALUE 2.670098627T2E+00
STATUS OPTINAL SOLK ITERATION 11 SUPERBASICS 7
GBJECTIVE FUNOBJ (Max)
RHS
RANGES RANGEL
BOUNDS BOUND1
SECTION 1 - ROWS
NUNBER _ ROW.. STATE ...ACTIVITY... SLACK ACTIVITY . _LOWER LINIT. . .UPPER LIRIT. .DUAL ACTIVITY .1
31 NMOBOO1 LL 0.00000 0.00000 None -1.01064 1
32 NOEOO2 LL 0. 00000 0.00000 Hone ~0.93193 2
33 KONOO3 LL 0. 00000 0.00000 Hone -0.85926 3
34 ANONOO4 LL 0. 00000 0.00000 Sone -0.79217 4
35 ANOEOOS iL 2, 00000 Q. 00000 Yone -Q.73021 5
38 NOEOOS LL 0,00000 0. 00000 Tone -0.87299 L]
37 RONOOT LL 0. 00000 0. 00000 Hone =0.82015 T
33 HNONOOS LL 0. 00000 0. 00000 Hone -0.5714 8
39 HMONOO9 LL 0.00000 0.00000 fone -0.52625 9
40 M03010 LL 0. 00000 0.00000 . 10.00000 ~9, 86433 10
41 CAPOO2 UL Fone 1.01064 11
42 CAPOO3 uL Bone 0.93193 12
43 CAPOO4 UL Hons 0.85926 13
44 CAPOOS UL Jone 0.79217 14
45 CAPOCO6 UL Jone 0.73021 15
46 CAPOOT UL Rone 0.487299 18
47 CAPOOS UL | {1.1] 0.62015 17
48 CAPOO9 UL Bona 0.57134 18
49 CAPO10Q uL Hone 0.52625 19
SO TERNIBY UL =20.00000 10.73212 20
SECTION 2 - COLUMES
NUMBER .COLUMN. STATE ...ACTIVITY... .0BJ GRADIENT. __LOVER LINIT. ..UPPER LINIT. REDUCED GRADNT A+]
1 EKAPOOL EQ 3.05000 3.05000 3.05000 1.09568 2
2 EAPOO2 BS 3.12665 3.05000 100 . 00000 . 22
3 LAPOO3 BS 3.21443 3.05000 100 . 00000 0,00000 23
4 EKAPOO4 BS 3.30400 3.05000 100 . 00000 0.00000 24
§ EAPOOS BS 3.39522 3.05000 100 . 00000 0.00000 25
8 IAPOOS BS 3.45780 3.05000 100 . 00000 0.00000 26
7 EKAPOOT BS 3.50172 3.06000 100 .00000 0.,00000 7
8 KAPOOS Bs 3.67643 3.06000 100 . 00000 0. 00000 28
9 EKAPOOS Bs 3.7TiS8 3.08000 100 . 00000 Q. 00000 29
10 EKAPO1O BS 3.868887 . 3.05000 100. 00000 . 30
11 COENOO1 LL 0.95000 1.0 ©.956000 100 , 00000 ~G.01064 n
12 COFOO2 Bs 0.968412 0.93193 0.95000 100 . 00000 3z
13 CO0§003 BS 0.99780 0.85926 0.98000 100 .00000 a3
14 CONOO4 BS 1.02820 0.79217 0.95000 100 . 60000 k!
15 CONOOS BS 1.059687 0.73021 0.95000 100 . 00000 35
18 COBOOS BS 1.09227 0.67299 0.95000 100 . 00000 a8
17 CONQO7 BS 1.12608 0.62015 0.95000 100 . 00000 a7
18 CO¥008 BS 1.16116 0.57134 0.956000 100 . 00000 38
19 COEOO9 BS 1.19763 0.52625 0.98000 10000000 39
20 COEo10 BS 1.21394 9.86433 0.95000 100 . 00000 40
21 1Ev001 BS 0.07885 0.06000 100 . 00000 . 41
22 1IV002 SBS 0.08778 0.05000 100 . 00000 0.00000 42
23 I¥v003 SRS 0.08957 0, 05000 100 . 60000 0. 00000 43

108 8. Examples
24 TEVOO4 111 0.09122 0.05000 100 .00000 0.00000 44
25 1BVOO0S 588 0.09266 0.05000 100 . 00000 0. 00000 45
26 IEVOO6 5BS 0.09384 0.05000 100. 00000 Q. 00000 44
27 IEVOO7 B3 0.09471 0.05000 100 . 00000 . 47
28 1IV008 $BS 0.09515 0.05000 0.11200 0.00000 48
29 IWV0O9 SBS 0.09508 0.05000 0.11400 0. 00000 49
30 ITVO10 UL 0.11600 0.08000 0.11600 0.86778 50

funcon called with natate =

Final nonlinear function values
1.02666 1.05620 1.08738 1.11942 1.15233
1.18812 1.22078 1.25631 1.29271 1.32994

funobj called with nstate =

Time for MPS input 0.05 seconds

Time for solving problem 0.09 seconds

Time for solution output 0.03 seconds

Time for constraint functions .01 seconds

Time for objective function 0.00 seconds

Endrun

8.5 Use of Subroutine MATMOD 109

8.5 Use of Subroutine MATMOD

The following example illustrates the construction of a sequence of problems, based on the Diet
problem of Section 8.1. It assumes that the following cards have been added to the SPECS file:

CYCLE LIMIT 3
CYCLE PRINT o3
CYCLE TOLERANCE 2.0
PHANTOM COLUMNS 1 {(or more)
PHANTOM ELEMENTS 3 (or more)

1. Solution of the original problem constitutes cycle 1.

2. After cycle 1, MATMOD will be called twice with NCYCLE = 2 and 3 respectively, denoting
the beginning of cycles 2 and 3. The value of N will include the normal columns and the
phantom columns; in this case, N = 6 + 1 = 7. Likewise, NE includes normal and phantom
elements; in this case, NE=24+3 = 27.

3. For cycle 2, we alter the cost coefficient on the variable called CHICKEN. This happens to
be the second variable, but for illustrative purposes we use the MINOS subroutine M4NAME
to search the list of column names 10 find the appropriate index. In this case, M4ANAME will
return the value JCHICK = 2.

4. Similarly, we use M4NAME to search the list of row names to find the index for the objective
row, whose name is known to be COST. In this case, MANAME will return the value JCOST = LL.
Since rows are stored after the N columns, this means that the objective is row number
JCOST — N = 4. (As it happens, this value is already available in the COMMON variable I0BJ .

5. This example assumes that CHICKEN already had a nonzero cost coefficient, since it is not
possible to increase the number of entries in existing columas. If the cost coefficient was
previously zero, it would have to be entered as such in the MPS file, and the SPECS file
would have to set AIJ TOLERANCE = 0.0 to prevent zero coefficients from being rejected.

6. For cycle 3, we generate one new column by calling upon the MINOS subroutine MATCOL.
The PHANTOM COLUMNS and PHANTOM ELEMENTS keywords must define sufficient storage for
this new column. (The estimates defined by the normal COLUMNS and ELEMENTS keywords

must also allow for the phantom columns and elements.)

7. For illustrative purposes, we make use of the specified CYCLE TOLERANCE and the value of
X(1) in the current solution, to decide whether to proceed with cycle 3.

3. After the call to MATCOL, the COMMON variable JNEW points to the new column. It allows us
to set a finite upper bound on the associated variable. If there had been insufficient storage,

or if COL(*) contained no significant elements, MATERR would have been increased from 0 to
1. Usually, this means that the sequence of cycles should be terminated (by setting FINISH

= .TRUE.).

110

8. Examples

(2 NNyl

ono

OO0 ODO0O00ON O0O00DONONNH

subroutine matmod{ ncycla, nprob, finiah,
m, n, nb, ne, nka, ns, nscl, nnams,
&, h‘, k‘. bl' bul
ascale, hs, namel, nDame2,
x, pi, re, z, nwecore)

o 4n & 0

implicit double precision (a-h,o-2)
integer+*4 ha{ne), hbsa(nb)

integer ka{nka), namal (nnama), name? (nnama)
double precision a(ne), ascalei{nscl), bl(ab), bu(nb)
double precisiocn x(nb), pi(m), re(nb), z(awcore)
logical finish

HINOS COMMON BLOCKS (TO BE USED BUT NOT ALTERED).

COMMON /JHIFILE/ IREAD.IPRINT,I9UGY
COMON /MSLOBJ/ SINP,NTOBJ . MINIMZ . NINF, 108J

COreION /CYCLEIY CNVTOL , JNEM, MATERR . MAXCY , HEFHNT . NPMANT . NPRINT

LOCAL STORASE.

DOUBLE PRECISION COLLtO), ZTOL

INTEGIR CHMICK1, CHICKE, COSTY, COSTR
OATA CHICKY, CHICKE /°CHIC*, 'KEN */
OATA cosTt, COSTR /'COsT, W4

THIS 13 AN EXAMPLE OF A USER-WRITTEN RAMROUTING MATMOD.
WHICH DEFINES A SEQUENCE OF PROBLENMS OY PERFORMING INTERNAL
MODIFICATIONS TO THE DATA FOR THE DIET PROBLEM.

MATMOD IS CALLED AT THNE BESINNIME OF EACH CYCLE DXEPT TME FINST.

NCYCLE WILL TAKE THE VALUES 2, 3, ... UP TO THE CYCLR LINMIT,

IF (NCYCLE .8T. 2) 0 TO 300

CYCLE 2. ALTER THE COST ON CHICKEN.

USE THE MINOS SUBROUTING MINAME TO FIND THE COLUMN TNOEX
FOR THE VARIABLE NAMED CHICKEN. COLUMN NAMES ARE CONTAINED

"IN THE FIRST N LOCATIONS OF IDY AND IDR.

NCARG = @ -
NOTFND = @
RS = 0
Ji =t
Jt s N
JUARK 3 Ji

C&LL MOMAMEL NB, ID0t, IDZ, CHICK{, CHICKE,
HCARD, NOTFND, MAXISS, J1, J2» JIARK, JONICK)
!I (JOHNICK .EQ. &) 80 TO %00

8.5 Use of Subroutine MATMOD

NOM FIND THE INOEX OF THE OBJECTIVE R0M. WNICM IS NAMED COST.
RON NAMES ARE STORED IN THE LAST M OCATIONS OF ID1 AND IDE.

J aN¢ Y

Jz z NB

JMARK 2 gt

CALL MaNAME(W8, ID1, IDEZ, COSTY, COSTE,

» NCAND, NOTFND, MAOMS, Ji, J2, JUARW, JCOST)
IF (JCOSY .EQ. 0) 80 TO %0

THE ROM NAFEER I9 NOM JCOST - N. IN FACT, THIS VALUR COULD NAVE
OEEN CRTAINED DIRECTLY FROM THE COMMOM VARIABLE IOBM.

ICOST = JCOST - N
IF {ICO8T .NE. 10BJ) 60 TO W0

NOM WE DIF INTO TNE MATRIX DATA STRUCTURE TO FDND WWERE TV
COST CORFFICIENT I3 IN THE MATRIX COLLMM ASSOCIATED MITH CNICKEN.

Kt = KACJONIOK)}
K2 3 KA(JONICK ¢ 1) = 1
DO 220 K = X1, K2
IF (HA(K) .EQ. ICOST) 90 TO 284

CONTIMUE

90 T3 0

ME FOUMND IT. NOM SUPPOSE CHICKEN IS SELLING AT A BARGAIN RATR.
30 OWDC = AIX)

AlK} 10,0

IF (J9UMY .8T. 0) WRITE(ISAN, 2000) OLDC, AIK)
RETURM

0oan

aonNneon

oonn

non

CYCLE 5. GENERATE A MEN COLUIMN.

FOR ILLUSTRATIVE MURPOSES ME SET P THR NEN PROBLEN OWMLY IF
THE SOLUTION TO THE CURRENT PROBLEN CONTAING MORS OATMEAL THAN
THE SPECIFIED CYCLE TOLERANCE. ME HAPPEN TO KNOM THAT OATMEAL
13 TWE FIRST VARSABLE, XV},

oo nn

300 IF (NCYCLE .6T7. 3) 80 TO "
If (I8N .8T. §) WRITE(INUMY, 3000) X11)
IF4X(1) LLE. CONTOL) 80 TO %
coLt1) = 500.9
cot(z) = 20.8
(= AE Yk T R
cotiea) = 5.0
ITL = 1.08-8
Cll-lmm MNe e MB: NE, NKA,
As WAy KA, BL, DU COL, ITOR)

c
€ THE COMOON VARZABLE MATERR 1S INITIALIZED EARLIER 1O ZEMO.
c PATCOL MILL DICREMENT 1T IN ™M EVvENT LRRONS.
- MATCOL ALSD DNCREMENTS JNEM POINT TG THE NEW COLMN,
e MEUSE JNEM TO SIVE THE ASSOCIATED VARTABLE AN UPPER DO,
c

IF (MATERR .67. #) 8O ™) W¢

NAE) » 2.0

RETURN

TEMCNATE CYCLED WWDER VARIOUR CONDITIONS.

aoNnn

%00 FININN &= . TRUR.
RETURN

:m FORMAT(/ * aus C“:.W CHICKEN CHANSED FRON', F8.2,
f o TOY, 2}

!00. FORMAT(/ ° san CURRENT AMOUNT OF OATMEAL I3', F8.2)

c g OF MATHOD

112 8. Examples

8.6 Things to Remember

Use the following space to record the fruits of your experience. They may be useful reminders
the next time you come to run MINOS. (We suggest you use a pencil.)

References 113

REFERENCES
Bartels. R. H. (1971). A stabilization of the simplex method, Num. Math. 16, 414-434.

Bartels, R. H. and Golub, G. H. (1969). The simplex method of linear programming using the LU
decomposition, Comm. ACM 12, 266-268.

Bjérek, A. and Duff, I. S. (1980). A direct method for the solution of sparse linear least squares
problems, Linear Algebra and its Applics. 34, 43-67.

Bracken, J. and McCormick, G. P. (1968). Selected Applications of Nonlinear Programmiag, John
Wiley and Sons, New York and Toronto.

Brooke, A., Drud, A. and Meeraus, A. (1985). High level modeling systems and nonlinear pro-
gramming, in P. T. Boggs, R. H. Byrd and R. B. Schnabel (eds.), Numerical Optimization
1984, SIAM, Philadelphia, 178-198.

Chvétal, V. (1983). Linear Programming, W. H. Freeman and Company, New York and San
Francisco.

Dantzig, G. B. (1951). Maximization of a linear function of variables subject to linear inequalities,

in T. C. Koopmans (ed.), Activity Analysis of Production aad Allocation, Proceedings of
Linear Programming Conference, June 20-24, 1949, John Wiley and Sons, New York, 359-

373.
Dantzig, G. B. (1963). Linear Programming and Extensions, Princeton University Press, Prince-
ton, New Jersey.

Davidon, W. C. (1959). Variable metric methods for minimization, A.E.C. Res. and Develop.
Report ANL-5990, Argonne National Laboratory, Argonne, Qlinois.

Fourer, R. (1982). Solving staircase linear programs by the simplex method, Math. Prog. 23,
274-313.

Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimization, Academic Press, Lon-
don.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1979). Two step-length algorithms
for numerical optimization, Report SOL 79-25, Department of Operations Research, Stanford
University.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1986). Maintaining LU factors
of a general sparse matrix, Report SOL 86-8, Department of Operations Research, Stanford
University. (To appear in Linear Algebra and its Applics., 1987.)

Himmelblau, D. M. (1972). Applied Nonlinear Programming, McGraw-Hill.

Lawson, C. L., Hanson, R. J., Kincaid, D. R. and Krogh, F. T. (1979). Basic Linear Algebra
Subprograms for Fortran usage, ACM Trans. Math. Software 5, 308-323 and {Algorithui
324-325.

Manne, A. S. (1977). ETA-MACRO: A Model of Energy-Economy Interactions, in C. J. Hitch

{ed.), Modeling Energy-Economy Interactions, Resources for the Future, Washingtou. D,
Also in R. Pindyck (ed.), Advances in tle Economics of Energy and Resources, Vol. 2: {'lic

114 References

Production and Pricing of Energy Resources, JAl Press, Inc., Greenwich, Connecticut, 1979,
205-233.

Manne, A. S. (1979). Private commuaication.

Murtagh, B. A. and Saunders, M. A. (1978). Large-scale linearly constrained optimization, Math.
Prog. 14, 41-72.

Murtagh, B. A. and Saunders, M. A. (1982). A projected Lagrangian algorithm and its implemen-
tation for sparse nonlinear constraints, Math. Prog. Study 16, Algorithms for Constrained
Minimization of Smooth Noalinear Functions, 84-117.

Preckel, P. V. (1980). Modules for use with MINOS/AUGMENTED in solving sequences of math-
ematical programs, Report SOL 80-15, Department of Operations Research, Stanford Univer-
sity.

Reid, J. K. (1976). Fortran subtoutines for handling sparse linear programming bases, Report
R8269, Atomic Energy Research Establishment, Harwell, England.

Reid, J. K. {(1082). A sparsity-exploiting variant of the Bartels-Golub decomposition for linear
programming bases, Math. Prog. 24, 55-69.

Robinson, $. M. (1972). A quadratically convergent algorithm for general nonlinear programming
problems, Math. Prog. 3, 145~156.

Rosen, J. B. and Kreuser, J. (1972). A gradient projection algorithm for nonlinear constraints,
in Numerical Methods for Non-Linear Optimization (F. A. Lootsma, ed.), Academic Press,
London and New York, 297-300.

Rosenbrock, H. H. (1960). An automatic method for finding the greatest or least value of a function,
Computer J. 3, 175-184. :

Saunders, M. A. (1976). A fast, stable implementation of the simpiex method using Bartels-Golub

updating, in Sparse Matrix Computations (J. R. Bunch and D.]. Rose, eds.), Academic Press;

New York, 213-226.
Woife, P. (1962). The reduced-gradient method, unpublished manuscript, RAND Corporation.

Wright, M. H. (1976). N umerical methods for nonlinearly constrained optimization, Ph. D. thesis.

Computer Science Department, Stanford University.

Index 15

INDEX

A, in printed wolution, 70, 73
Accuracy, for satisfying linear constrainta, 26, 67
for satisfying nonlinear constraints, 35
for solving linearized subproblems, 22
of computed funciions, 27, 66-87
of linesearch procedure, 28-1¢
AlJ TOLERANCE, 21
Alternative optimum, 70
Augmented Lagrangian, 34, 59

B, Basis matrix, 2-3, M4
BACKUP BASIS FILE, 23, 49-51
Bastels, R. H., ii, 3
Bagic variabies, 2
BASIS filea, 49-58
Basis map, 49-51, 68-69
Basis matrix, B, -3, M
Bounds, 1-5, 4648

speciflcation of default values, 29, 38
BMAX, in basis factorisation statistics, 83
BOUNDS section of MPS e, 48-48
BOUNDS keywoed, Specifying name of bound set, 21
=BS, in iteration log, 58

CALCPG, subroutine, i
CALCON, subroutine, |
CENTRAL DIFFERENCE INTERVAL, 23
CHECK FREQUENCY, 12
COEFFICIENTS, 2
Cold start, see CRASH procedure
Column ardering, implicis, 31, 44
Column variables, 1, 71
COLUMNS section, of MPS e, 31, 4344
of printed solution, 71-72
COLUMNS, estimate of number of variables, 22
Comment cards, in MPS file, 4148
in SPECS file, 17-18
COMMON blocks, 7, 15-16, 83, 78, 79
reserved, 78
Compatibility with MINOS 4.0, 51
COMPLETION options, 23
Composite objective technique, 40
COMPRSSNS, in basky factorization stasistics, 61
Conjugate-gradient method, i
Constant Jacahian elements, 12, 44
CONV, in iteration log, 80
Convergencs, likelihood of, 4, 23-2¢, %0
raie of, 3, 27, 34
tolerances, see FEASIBILITY TOLERANCE,
OPTIMALITY TOLERANCE and

also sce CYCLE TOLERANCE
CRASH procedure, for selecting initial basis,
22-23, 47
options, 23-38, 47 A
Cycle facilitics (for sequences of problems), 8,
13-15, 23, 56, 109-111, A
LE options, see cycle facitition
Cycling (endiess iterations), 65

D, in printed solution, 70, 73
Damped Newton method, 23
DAMPING PARAMETER, 23-3¢
Dantsig, G. B., i, ii, t
Data, input sequence, 7
Davidon, W. C., }, 2
DEBUG LEVEL, 24
Default values for SPECS Ble keywords, 18-20
Degenerate variable, 70
+ in basis factorisation statistics, 81

Dense Jacobian matrix, 44, 04, 98
DENSITY, in basis factorization statisties, 61
DERIVATIVE 12, 2428
DIFFERENCE INTERVAL, 25
Difference approximation to derivatives,

see missing gradients
DJ, in iteration log, 58, 80
Dual simplex mathod, |
Dual variables, 10, 32, 84,70,71, 73
DUMP file, 28, 53-54

ELEMENTS, estimate of nonseros in A, 25
ELEMS, in basis factorisation statistics, 81
EMERGENCY VERIFY LEVEL, see VERIFY options
End-of-File condition when reading SPECS 8le,
43, 81
ENDRUN message, 63
Equality constraints, 42
Error checks, on computed gradients, 38-37,
38-39, &8
onu&llryln‘As-l-a-O,H,ﬂ
Error messages, 34, 63-69
during input of MPS file, 2¢
ETAMACRO, test problem, 78, 84, 92
Exampie probiems, 88-10¢
Exit conditions, 3-89

F, parameter of FUNGBJ, 10, 18
F(=), parameter of FUNCON, 11, 12
F(z), see nonlinear objective function
J(z), see nonlinear constrajnt functions
Factorization of basis matrix, 28, 29, 33, 58-59,
61-62
FACTORIZATION FREQUENCY, 28
FACTORIZE. in basis factorization statistics, 81
FEASIBILITY TOLERANCE, 26, 47, 64
Feasible pointa, definition, 3
evaluation of functions as, 3, 28, 47
Files, -7, 380, 82, 88
Formulation of problems, S, 8
Fortran source files for MINOS, 73-81
Fortran 66 versus Fortran ™1
Free rows, 42
Free variables, 4§
Full completion (accurate solution of subproblems),
2

2
FUNCON, subroutine, |
consistency with MPS file, 44
examples, 98, 100
specification, (1-12
FUNCTION PRECISION, 27, 67
FUNQBJ, subroutine, 7.8
consistency with MPS file, 44

118 Minoa 5.0 User's Guide

sxyamplea, 00, 05, 94
specification, 9-10

G(*), parameter of FUNQBJ, 10

G(*), parameter of FUNCON, 11-12, 44
Gill,P.E., i, 2, 8

Global optimum, 5, 64

Golub, G. H,, i, 2

GROWTH, in basis factorisation statistics, §2

Header cards in MPS file, 41
HESSIAK DIMEMSION, 27, 37
Heseian matrix, 3

HMOD, in iterstion log, 59
H=-COMNDN, in iteration log, 80
HS(#), state vector, 14, 50-51, 69

1, in printed sclution, 71, 73
INCREASE, in basis factorisation statistics, §3
[nequality constrainta, 42
INFEAS, in basis factorisation statistics, 81
Infeasibilities, 26, 40
Infeasible problems, 28, 64-88
Infeasible subproblems, 6488
Infinite bounds, 4§
Initial point, zo, 3 4,5 23, 47-48
INITIAL bounds set in MPS fle, 4748
input to MINOS, 7
examples of, 85-103
INSERT fila, 27, 52-53, 54
{nstalling MINOS, 75-81, 88
Integer programming, 1

Internal modifications to problem, ses cycle facilities

Invert procedurs, see factorization of baaia watrix
Iteration log, 29, 57-80
example, 105~108
ITERATIONS LIMIT, 28
ITN, in iteration log, 57

Jacobian matrix, J{x), definition, 3
computation of, 11-13
constant coeficients, 12, 44
puitlnnwithinconﬁrlintmﬂri:&i,“
printing, 34
sparsity pattern, 12, 44

JACOBIAN option (DENSE or SPARSE), 28, 44

Keywords in SPECS file, 17
checkiist and default values, 18-20
definitions, 21-40

Kreuser, J., i

&, preblem, 08
A, see Lagrange multipliers
L, in iteration log, 58
LADS basis-handling package, il
Lagrange muitipliers, Ag, i, 4, 13, 14, 71
printing, 34
initial estimate, Xo, ¢
Lagrangian, 4
LAGRANGIAN option (YES or NO), 4, 28
Least squares, linear, 93-93
LENL, in basis factorisation statistics, 1
LENU, in basis factorisstion statistics, 61
LINEAR, in basis factorization statlstics, §1
Lipear approximation to nonlinear totatrainta,
see linearised constrainie
Linear constraints, 1-5, 18
Linear programming, 1, 9
example, 86-87
test problem, soe ETAMACRO
Linesrized constraints, 4, T0
Linearly constrained optimisasion, 3-3
examples, 90-93
Line search, 3

Linesesrch procedures, ii, 28-29, 38
Linking subroutines to MINOS, 84
LIST LIMIT, for printing MP3 file, 39
LMAX, in basis factorization statistics, 62
LOAD file, 29, 53-54

LOG FREQUENCY, 29, M

Loeal optimum, 3, &4

Logical variables (siacks), 1

Lower bounds, see bounds

LOWER BOUND (default lower bound ou all variables),

b1)

LU factorization of basis matrix, i, 2, 3, 81, 68
see (actorization of basis matrix

LU FACTOR TOLERANCE, 30, 63

LU UPDATE TOLERANCE, 30

LUSOL basis-handling package, i-il, 2

m = m; + ma (number of nonlinear and linear
consiraints), 1, 8
m; {number of nonlinear constrainta), t, 6, 18
mjy (number of linear constraints), 1, 8, 18
Machine-dependent subroutines, 73, 79-81
Machine precision, ¢, 18, 81
Main program, 78, 83
Major iteration, 4
MAJOR ITERATIONS limit, 30
Manne, A. 8., ii, 83, 84
MANNE, test problem, 75, 76, 80, 83, 98-108
Markowits, ordering for sparse LU Iactorisation,
i, 3, 61
MATCOL, subroutine, 14, 23
specification, 18
Mathematical programming systems, i, 34, 44, 4§,
52-54
MATMOD, subroutine, 7, 8, 23, 33
example, 108-111

Index

117

specification, 1314
Matrix coeficients, ignoring small values, 21, 109
number of, 25
Matrix data structure, 15
Minor iteration, 2
MINOR ITERATIONS limit, 30
MINOS, acronym, ii
MERIT, in basis factorization statistics, 61
MHW4D, example problem, 9497
Missing gradients, 1, 9, 24-28
MODE, parameter of FUNCBJ and FUNCON, 9-10, 11,
12, 88
MPS file, 8, 7, 30, 41-48, €8
examples, 87, 89, 01, 97, 102-103
restrictions and extensions, 48
MULTIPLE PRICE opéion, $1
Murray, W., 1, 2, 8
Murtagh, B. A, 2, 3

n == n; + nyg (number of nonlinear and Hnear
variables, exciuding siacks}, 1, §
ny = max{w},n]} (oumber of nonlinear variables, 1),
1,6, 18, 37
n} (number of nonlinear objective variabies), 31
n] (number of nonlinear Jucobian variables), 31
ns (number of linear variables, y), 1
N, matrix sseocisted with nonbasic variabies, 3
N, in printed solution, 71, 73
NAME card in MPS fils, 41
NCOR, in iteration log, 58
NCP, in iteration log, 59
NINPF, in iteration log, 58
NJAC, parametar of FUNCON, 11, 19, 18
NEW BASIS file, 321, 31, 49-31
NOBJ, in iterstion log, 39
Noisy functions, 1, 27, 8647
Nonbasic variables, 3
Nonlinear constraint functions, f(s), 1, 3-4, 7, 11-13
printing, 34
Nonlinear consiraints, 1, 3-4, 8
Nonlinear equations, 33-34
Noslinear Jacobiaa variablies, 31, 44
Nonlinear objective function, F(s), 1, 3-3, 7, 9-10
Nonlinear objective variables, 31, 44
Nonlinear variables, 1, 4, 44
printing, 34
NONLINEAR, in basis factorisation staiistics, 81
NONLINEAR CONSTRAINTS and VARIABLES, 31
Nonlinearly constrained optimisation, 3-4
exampiles, 94-108
NOPT, in iteration log, 58
NFROB, parameter of FUSOBJ, FUNCON and MATNOD,
10

NEB, in iteration log, 59
NSTATE, parameter of FUNOBJ and FUNCON, 10
NWCORE, parameter of FUNOBJ, FUNCON and MATMOD,

10, 40, T9

Objective function (F(z) + ¢Tz + dTy), 1
Objective row in MPS file (defining <7z + dTy), 43
QBJECTIVE, in basis factorisation statistics, 61
QBJECTIVE, in iteration log, 59
GBJECTIVE keyword, specifying name of lineas
objective, 32
QLD BASIS file, 21, 32, 49-51
Optimal solutions, loeal and global, 5, 6384
QPTIMALITY TOLERANCE, 32, 64, 67, T1
Ordering of constraints and variables, 31, 43, 44
Qutput from MINOS, 57-74,
see siso LOG FREQUENCY, PRINT LEVEL,
SUMMARY FREQUENCY

P4 ordering for sparse LU factorisation, |
Parameters, i, 7

Partial pricing, 33, 57-38

Penalty paramaeter, p, 4, 33, 38

PENALTY PARAMETER, 4, 33

PH (Phass), in iteration log, 57-58
PHANTOM COLUMNS snd ELEMENTS, 4, 15, 23
Plece-wise smooth functions, [, 93

PILOT enargy-economic model, i

PIVUOT, in iteration log, 58

PIVOT TOLERANCE, M, 53, 7

PP, in iteration log, 87

Preckal, P. V.,

PRICE operation, 57

Primal simplex method, ses simplex method
PRINT file, §-7, 38

PRINT LEVEL options, 34, A]

Problem forms soived by MINOS, 1
Problem formulation, 3-8

PROBLEM NUMBER, 10, 13, 34

PUNCH &le, 35, 53, 54

Quasi-Newtoa method, |, 2, 3, 6, 27, 59-80

R, trisnguiar msatrix for appreximation to
reduced Hessian, 3, 8, 27, 59-60
RADIUS OF CONVERGENCE, 35
Ranges on general consiraints, 1, 4548
RANGES section of MPS file, 13-4
RANGES keyword, specifying name of range set, 38

Racord length of files, ¢-7
Redueed gradient (vector), 3, 332, 37, 58, 73
Reduced-gradient algorithm, 1, 4, 58-60
Reduced Hessian (matrix), 13, 59-60
Reid, J. K., i, i, 3
Restarting previous runs, 4§, 55-58, 71
Rastrictions, in MPS lormat, 48

on problem characteristics, 5-4
Rewinding Gles, 7
RG, in iteration log, 58
RHS section of MPS file, 48
RHS keyword, specifying name of right-hand side, 33

118

Minos 5.0 User’s Guide

Right-hand side, 1, 48

Robinson, 3. M., i, 3

Roeen, J. B, |

ROW CHECX, message in PRINT file,
see CHECK FREQUENCY, 22

ROW TOLERANCE, 22, 26, 3§

RQOWS section, of MPS file, 4243

of printed solution, 70-71

ROWS, estimate of number of general constraints,

s, vector of slack variables, see slack veriables
s, number of superbasic variables, 2, 8

5, matrix associated with superbasic variables, 2

Saunders, M. A., 1, 2, 3
SAVE FREQUENCY, 21, 34
Saving basis files, 11, 38, 65
+SB8, -SBS, in iteration log, 34
SCALE options, 38. A |
Scaling of dats and variables, 3, 35-38
SCRATCH flle, 87 :
Search direction, 3
Sensitivity snalysie, §
Separable functions, 4
Sequence of problems, 7, 8, 13-15
Simplex method, 1-2, 57
SINF, in iteration log, 50
Singuiar basis, 53, 83
Singularities in nonlinear functions, 5, 28, 38
Slack variables, 1, 13, 38, 70-71
SLACKS, in basis factorisation statistics, 81
Smooth functions, 1, §
Solution output, 70-72
example, 108
SOLUTION fle, 8-7, 38, 72
SOLUTION options, 36-37
Source files (MINOS Fortran code), 75-81
Sparse Jacobiaa matrix, 4, 44
Sparse constraint matrix, 4, 18
SPECS fle, 6-8, 17-40
checklist and defauit values, 18-20
examples, 86, 38, 91, 93, 97, 101

format, 17-18
keywords, 2140
Spikes, |
Standard form for problems, 1
START and STOP t verification, 37

State vector, H8(*), 14, 50-51, 69

STEP, in Reration log, 38

Storage allocation and/or requirements,
soe workapace

Structural varisbles, 1

Subproblem, definition, 4

Subroutine hierarchy, 82

Subroutine names, reserved, 77-78

Subroutines, required from user, 7, 30

SUBSPACE TOLERAKCE, 37, 60

SUMMARY fle, 6-7, 38, 73-74

SUMMARY FREQUENCY, 38

Superbasic variables, 2, 8, 13, 38

SUPERBASICS LIMIT, 27,38

Suppression of output, 3, 38

SUPPRESS PARAMETERS option, 38
System information, 6-8, 15-16, 63, 75-82

Test problems, 75, 76, 8384, 85-92, 94--108
TOO MANY ITERATIONS, exit condition, 8§

Tranaformation of variables, §

U, in iteration log, 58

UMAX, in basis factorisation statistics, 62

VMIN, in basis factorisation etatistics, 83

Unbounded problems, 38, 65

Unconstrained optimitation, example, 8889

Upper bounds, see bounds

UPPER BOUND (default upper bound on all variables),
3

VERIFY options for checking gradients, 38

Warm start, 49-58

WATFIV compiler, iil, 76

WEAPON, test problem, 75, 83

WEIGHT ON LINEAR

Wolfe, P., i, 2

Workspace (storage requirements), 3-8, 10, 40, 59,
68, 69, 79, 80

WORKSPACE parameters in SPECS flle, 40, £8

Wreight, M. H., i, 2, 3, M

Wrylbur text editor, iit

£, nonlinear variables, 1, 4
20, #soe initial point
Za, 4

printing, 34

¥, linear variables, 1

Z, null-space operator, 3
Z, workspace array, see workspacs

Appendix A

MINGQOS 5.5

Most of the MINOS 5.0 User’s Guide applies to all versions of MINOS since 1983. The
Guide has been changed slightly to match MINOS 5.1. These appendices summarize further
changes and new features in MINOS 5.5.

A.1 CHANGES BETWEEN MINOS 5.1 AND MINQOS 5.5

1. MINOS is now callable as a subroutine (see Appendix B). The stand-alone form of
MINOS reads constraint data from an MPS file, whereas subroutine minoss has the
same information passed to it as parameters. In these notes the term MINOS usually
refers to both cases, but occasionally we need to distinguish between them.

2. Upper and lower case may be used in the SPECS file. Numerical values may contain
up to 16 characters. For example,

Iterations limit 2000
Lower bound =1.23456E+07

3. The default values of some options have changed as follows:

Print level 0

Print frequency 100 (alias Log frequency)
Summary frequency 100

Hessian dimension 50

Superbasics limit 50

Crash option 3 (new default and new meaning)
Scale option 2 for LP, 1 for NLP
Factorize frequency 100 for LP, 50 for NLP

LU Factor tolerance 100.0 for LP, 5.0 for NLP

LU Update tolarance 10.0 for LP, 5.0 for NLP
Partial price 10 for LP, 1 for NLP

Check frequency 60

Penalty parameter 1.0 is equivalent to old default

4. Derivative level O requests a function-only search, even if funobj and funcon
compute all gradients. The linesearch calls these routines with mode = 0, not mode =
9 An extra call with mode = 2 is needed after the search, but the net cost may be
less if gradients are very expensive (e.g., if the user is estimating them by differences).

119

120

Appendix A. MINOS 5.5

5. funobj and funcon may now return mode = —1 to mean “My nonlinear function is

undefined here”. During normal iterations, this signals the linesearch to try again
with a shorter steplength.

Previouslv. if funobj or funcon returned mode ; 0, it meant “Please terminate”. To
request termination now. set mode < =2.

. Crash option 2 and 3 have been altered, The Crash procedure chooses a triangular

basis from various rows and columns of (A [). In some cases it is called more than
once as follows:
Crash option 0 chooses the all-slack basis B = I.
Crash option 1 calls Crash once, looking at all rows and columns.
Crash option 2 calls Crash twice, looking at linear rows first.
Nonlinear rows are treated at the start of Major 2.
Crash option 3 (default) calls Crash three times, looking at linear
equality Tows first, then linear inequalities, then
nonlinear rows (if any) at the start of Major 2.

. For problems with many degrees of freedom (lots of superbasic variables), experience

suggests the following. Up to a certain point, it is best to provide a full triangular ma-
trix R for the “reduced Hessian approximation” used by the quasi-Newton algorithm.
For exampie,

Hessian dimension 1000
Superbasics limit 1000

would be suitable for most practical models. However, if the number of superbasic
variables does reach 1000, considerable computation is needed to update the 500,000
elements of the dense matrix R.

For more extreme cases it may be better to work with a smaller matrix R:

Hessian dimension 100 or 200
Superbasics limit 5000

(e.g., for optimization with many variables and few constraints). The number of
iterations and function calls will increase substantially. The functions and gradients
should therefore be cheap to evaluate.

For general problems with many degrees of freedom, consider LANCELOT. For large
problems with bound constraints only, consider LBFGS-B or LANCELOT. Both sys-
tems are available via NEOS: http://www.mcs.anl.gov/home/otc/

_ Jacobian = Dense or Sparse is still needed with MPS files, but need not be specified

when subroutine minoss is used.

_ The Minor iterations limit now applies to the feasible iterations in each major iter-

ation. Any number of (infeasible} minor iterations are allowed while MINQS iterates
towards a “feasible subproblem™.

A.1 Changes between MINOS 5.1 and MINOS 5.5 121

10.

11.

12.

13.

The first major iteration is special—it stops as soon as the original linear constraints
are satisfied.

For later major iterations, if the log says 50T and the Minor iterations limit is 40,
we know that 10 minor iterations were needed 1o satisfy the linearized comstraints of
the subproblem, and a further 40 were spent optimizing the subproblem before it was
terminated by the Minor iterations limit.

Penalty parameter 1.0 is now the default, and it is relative to the old default of
100/, where m, is the number of nonlinear constraints. Penalty parameter 2.0
means twice the default value. This makes it easier to experiment with.

It is possible to turn off all output to the PRINT and SUMMARY files. The Print and
Summary options are as follows:

Print file 0 No output to PRINT file.

> 0 Output to specified file.
Print level 0 One line per major iteration.

> 0 Full output as before.
Print frequency 0 No minor iteration log.

i A minor iteration line every i itns.

Summary file 0 No output to SUMMARY file.

> 0 Output to specified file.
Summary level 0 One line per major iteration.

> 0 More output.
Summary frequency O No minor iteration log.
i A minor iteration line every i itns.

Cold, Warm and Hot starts may be used when solving a sequence of problems of the
same Size.

For stand-alone MINOS, the sequence of problems is defined via the Cycle parameters
and the user routine matmod, which may access the common block

logical gotbas,gotfac,gothes,gotscl
common /cyclel/ gotbas,gotfac,gothes,gotscl

to say whether or not the existing basis, basic factorization, reduced Hessian, and/or
scales should be used to initialize the next solve. If gotbas = .falsa., Crash will be
used to choose a starting basis. Otherwise, a basis is assumed to be specified by the
array hs(*), and some or all of the other three quantities may be preserved.

For subroutine minoss, these logicals are set if the first parameter start is ’Hot
xxx’, where xxx is any of the letters FHS. See Appendix B.

Following the EXIT message, some information is output to the PRINT file and the
SUMMARY file. Lines of the form

Primal inf (scaled} 444 4 . 8E-07 Dual inf (scaled) 268 6.2E-06
Primal infeas 412 2.68E~08 Dual infeas 502 9.3E-07
Nonlinear constraint violn 2.5E-14

122

Appendix A, MINOS 5.5

14.

15.

16.

17.

show the maximum primal and dual infeasibilities before and after scaling, and the
associated variable number. (Variable j is a column z; for 1 € j < n and slack s,_,
forn+1<j<n+m)

Note that “Primal infeasibility™ is the amount by which = and s lie outside their
bounds. In this example, variable 444 lies furthest outside its bounds before the
solution is unscaled. More importantly, variable 412 is the most infeasible in the
final solution-—it lies outside its bounds by 2.6e-6. If this seems too large, the
Feasibility tolerance would need to be reduced below the maximum scaled infea-
sibility 4.6e-7 (or the unscaled value 2.6e-6 if scaling was not used).

Similarly, variable 502 is the one whose reduced gradient has the “wrong sign” by the
largest amount. If this seems too large, the Optimality tolerance would need to
be reduced below 5.2E-06*norm{(pi), where the required norm of 7 is printed three
or one lines above (depending on whether scaling was used).

Where relevant, the Nonlinear constraint violn line gives the maximum amount
by which any nonlinear constraint value lies outside its bounds in the final unscaled
solution.

The printed solution and SOLUTION file treat 0.0, 1.0, -1.0 specially. In particular, a
dot (.) means 0.0, not “Same as the line above”!

In the Fortran source code, integer*2 has been changed to integar#4 throughout, to
allow solution of arbitrarily large problems. This change is reversible. (The variable
nwordh must be set appropriately in subroutine miinit.) If integers2 is used, the
maximum number of rows is 16383.

In source file mi10%.for, subroutine mifile defines some “hard-wired” file numbers
and opens most files by calling miopen. Some of the file numbers and open statements
may need to be altered to suit your system.

The first two lines of OLD BASIS and NEW BASIS files accommodate larger problems
than in MINOS 5.1.

A.2 NEW SPECS FILE KEYWORDS

All of the following keywords are new except the first. Crash options 2 and 3 now have 2
different effect and option 4 is not defined.

Crash option t Default = 3

Except on restarts, a Crash procedure is used to select an initial basis from certain rows
and columns of the constraint matrix (A I). The Crash option ¢ determines which rows
and columns of A are eligible initially, and how many times Crash is called. Columns of [

are

used to pad the basis where necessary.

i = 0 The initial basis contains only slack variables: B = I.

1 Crash is called once, looking for a triangular basis in all rows and columns of A.

A.2 New SPECS file keywords 123

2 Crash is called twice (if there are nonlinear constraints). The first call looks for a
triangular basis in linear rows, and the first major iteration proceeds with simplex
iterations until the linear constraints are satisfied. The Jacobian is then evaluated for
the second major iteration and Crash is called again to find a triangular basis in the
nonlinear rows (retaining the current basis for linear rows).

3 Crash is called up to three times (if there are nonlinear constraints). The first two
calls treat linear equalities and linear inequalities separately. As before, the last call
treats nonlinear rows at the start of the second major iteration.

If i > 1, certain slacks on inequality rows are selected for the basis first. (If 7 > 2,
numerical values are used to exclude slacks that are close to a bound.) Crash then makes
several passes through the columns of A, searching for a basis matrix that is essentially
triangular. A column is assigned to “pivot” on a particular row if the column contains
a suitably large element in a row that has not yet been assigned. (The pivot elements
uitimately form the diagonals of the triangular basis.) For remaining unassigned rows,
slack variables are inserted to complete the basis.

Defaults

When minoss is in use, call miopt(’Defaults’) causes all MINOS options to be set to
their default values.

Expand frequency i Default = 10000

This option is part of an anti-cycling procedure designed to guarantee progress even on
highly degenerate problems.!

For linear models, the strategy is to force a positive step at every iteration, at the
expense of violating the bounds on the variables by a small amount. Suppose that the
Feasibility tolerance is §. Over a period of ¢ iterations, the tolerance actually used by
MINOS increases from 0.56 to é (in steps of 0.56/1).

For nonlinear models, the same procedure is used for iterations in which there is only
one superbasic variable. (Cycling can occur only when the current solution is at a vertex
of the feasible region.) Thus, zero steps are allowed if there is more than one superbasic
variable, but otherwise positive steps are enforced.

Increasing i helps reduce the number of slightly infeasible nonbasic basic variables (most
of which are eliminated during a resetting procedure). However, it also diminishes the
freedom to choose a large pivot element (see Pivot tolerance).

LU density tolerance ™ Default = 0.6
LU singularity tolerance T Default = ¢2/3 ~ 107!

The density tolerance 7, is used during LU factorization of the basis matrix. Columns of L
and rows of U are formed one at a time, and the remaining rows and columns of the basis

1The EXPAND procedure is described in “A practical anti-cycling procedure for linearly constrained
optimization”, P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, Mathematical Programming 45

(1989), pp. 437-474.

124 Appendix 4. MINOS 5.5

are altered appropriately. At any stage, if the density of the remaining matrix exceeds ri.
the Markowitz strategy for choosing pivots is altered to reduce the time spent searching for
each remaining pivot. Raising the density tolerance towards 1.0 may give slightly sparser
LU factors. with a slight increase in factorization time.

The singularity tolerance r; helps guard against ill-conditioned basis matrices. When
the basis is refactorized, the diagonal elements of U are tested as follows: if |Uj;] < 2 or
|U;,| < r2max,|Uy;l, the j-th column of the basis is replaced by the corresponding slack
vaniable. {This is most likely to occur after a restart, or at the start of a major iteration.)

[n some cases, the Jacobian matrix may converge to values that make the basis exactly
singular. {For example, a whole row of the Jacobian could be zero at an optimal solution.)
Before exact singularity occurs, the basis could become very ill-conditioned and the opti-
mization could progress very slowly (if at all). Setting r; = 1.0e-5, say, may help cause a
judicious change of basis.

Minor damping parameter T Default = 2.0

This parameter limits the change in z during a linesearch. It applies to all nonlinear
problems, once a “feasible solution™ or “feasible subproblem” has been found.

L. A linesearch of the form minimize, F(z + ap) is performed over the range 0 < & < 3,
where 4 is the step to the nearest upper or lower bound on z. Normally, the first
steplength tried is a; = min(1,5).

9 In some cases, such as F(z) = aet® or F(z) = az®, even a moderate change in the
components of z can lead to floating-point overflow. The parameter r is therefore
used to define a limit 3 = r(1+ ||z]})/!lp|l, and the first evaluation of F(x) is at the
potentially smailer steplength o = min{1, 3, 3).

3. Wherever possible, upper and lower bounds on z should be used to prevent evalu-
ation of nonlinear functions at meaningless points. The Minor damping parameter
provides an additional safeguard. The default value r = 2.0 should not affect progress
on well behaved problems, but setting r = 0.1 or 0.01 may be helpful when rapidly
varying functions are present. A “good” starting point may be required. An important
application is to the class of nonlinear least-squares problems.

4. In cases where several local optima exist, specifying a small value for » may help locate
an optimum near the starting point.

Timing level i Default = 2

i =0 suppresses timing.

i =1 times input, solve and output.

i =2 times input, solve, output, funcon and funobj.
The values i = —1 and ~2 are the same as 1 and 2, except the times are not printed at the
end. If you are calling subroutine minoss, you may print the times in your own format by
accessing the following common block:

A.3 Algorithmic Changes 125
parameter { ntime = 5 }
COMMOn /mitim / tlast{ntime), tsum{ntime), numt(ntime), ltime
where
numt (&) is the number of times clock & has been turned on.

tlast(k) is the time at which clock £ was last turned on.

tsum{k) is the total time elapsed while clock & was on.

ltime is the Timing level i.
For k = 1 to 5, clock k times input, solve, output, funcon and funobj respectively. See sub-
routines mitime and mitimp for further details. For Timing level 2, MINOS and minoss
both call mitime at the end of a run. This prints the “total time” statistics using a loop of
the form

do k = 1, ntime

call mitimp(k, 'Time’, tsum(k))
end do

A.3 ALGORITHMIC CHANGES

1. The linesearch takes shorter steps if funobj or funcon return mode = —1 (mentioned
above).

2. “Basis repair” is sometimes invoked at the start of a major iteration, or following a
linesearch failure. A stable, sparse LU factorization of the combined basic/superbasic

matrix (B S) is computed by LUSOL in the form
BT
P (§T) @ =LU,

where P and Q are permutations and L is well-conditioned. Then P provides a
reordering of the columns of (B S) that makes the condition of the new B close
to optimal.

In the major iteration log, BSswp gives the number of variables that were swapped
between B and §. (Zero means that the current basis was retained. The current
reduced Hessian matrix R is then also retained, to help solve the subproblem more
quickly.)

3. The triangular reduced-Hessian matrix R is now stored row-wise instead of column-
wise in an array T (), because most updating operations traverse the rows of R. This
reduces paging on a machine with virtual memory and improves the use of cache
memory when there are many superbasics and Hessian dimension is large.

4. Nonlinear objective and constraint functions are not evaluated until the linear con-
straints have been satisfied (to within the Feasibility tolerance). Previously, any
nonlinear constraints were evaluated at the starting point regardless of feasibility.

5. Gradient checking now takes place after the linear constraints have been satisfied.
Previously, it occurred at the starting point.

Appendix A. MINOS 3.5

126

Appendix B

Subroutine minoss

This appendix describes minoss, the subroutine version of MINOS. Later sections describe
an auxiliary routine (mispec) for reading a SPECS file, and some additional routines for
specifying individual lines of such a file as part of the calling program.

Note that subroutine mispec must be called before the first call to minoss, even if a
SPECS file is not being read.

In the subroutine specifications, “double precision” entities are appropriate for most
machines, but in same cases {e.g. on Cray and Convex systems) they should be changed
to their “single precision” equivalents. In some installations, integer*4 may have been
changed to integer*2 throughout the MINOS source code, to conserve storage. Otherwise,
both integer=4 and plain integer are intended to mean 4-byte words.

B.1 SUBROUTINE MINOSS

Problem data is passed to minoss as parameters, rather than from an MPS file. This is
generally more efficient and convenient for applications that would normally use a “matrix

generator”.

Specification

subroutine minoss(start, m, n, nb, ne, nnama,

$ nncon, nnobj, nnjac,
$ iobj, objadd, names,
$ a, ha, ka, bl, bu, namel, name2,
$ hs, xn, pi, re,
$ inform, mincor, ns, ninf, sinf, obi,
$ z, nwcore)
implicit double precision (a-h,0-2)
character*(*) start
integer m, n, nb, ne, nname,
$ nncon, nnobj, nnjac, iobj,
$ inform, mincor, ns, ninf, nwcora
double precision objadd, sinf, obj
character*8 names(5)
integer*4 ha(ne), hs(nb)
integer ka(n+1), namel(nname), name2(nname)

double precision a(ne), bl(nb), bulnb)
double precision xn(nb), pi(m), rc{nb), z{nwcore)

127

128

Appendix B. Subroutine minoss

On entry:

start

nb

ne

nncon
nnobj

nnjac

specifies how a starting basis (and certain other items) are to be obtained.

start = ’Cold’ means that Crash should be used to choose an initial basis
(unless a basis file is provided).

start = 'Warm’ means that a basis is already defined in hs (probably from
an earlier call).

start = ’Hot’ or ’'Hot FHS' implies a Hot start. hs defines a basis and an
earlier call has defined certain other things that should also be kept. The
problem dimensions and the array z(*) must not have changed.
F refers to the LU factors of the basis.
H refers to the approximate reduced Hessian R.
S refers to column and row scales.

start = 'Hot H' (for example) means that only the Hessian is defined.

start = ’'Basis file’ is the same as start = Cold” (but is more mean-
ingful if an OLD BASIS, INSERT or LOAD file is provided).

is m, the number of general constraints. For LP problems this means the
number of rows in the constraint matrix A. If integer*4 has been replaced
by integer*2 throughout the Fortran source code, m should not exceed 16383.
Otherwise there is essentially no upper limit.

In principle, m > 0, though sometimes m = 0 may be acceptable. (Strictly
speaking, Fortran declarations of the form double precision pi{(m) require
m to be positive. In debug mode, compilers will probably enforce this, but
optimized code may sometimes run successfully with m = 0.)

is n, the number of variables (excluding slacks). For LP problems, this is the
number of columns in A (> 0).

is nb = n + m (the number of bounds in bl or bu).

is ne, the number of nonzero entries in A (including the Jacobian for any
nonlinear constraints). In principle, ne > 0, though again m = 0, ne = 0 may
work with some compilers.

is the number of column and row names provided in the arrays namel and
name?. If nname = 1, there are no names. Generic names will be used in the
printed solution. -therwise, nname = nb and all names must be provided.

is my, the number of nonlinear constraints (> 0).
is n}, the number of nonlinear objective variables (> 0).

is n/, the number of nonlinear Jacobian variables (> 0). If nncon =0, nnjac =
0. If nncon > 0, nnjac > 0.

B.1 Subroutine minoss 129

iobj

objadd

names(5)

a(ne)
ha(ne)

ka(n+1)

bl(nb)

bu(nb)

says which row of A is a free row containing a linear objective vector c. If there
is no such vector, iobj = 0. Otherwise, this row must come after any nonlinear
rows, so that nncon < iobj < m.

is a constant that will be added to the objective. Typically objadd = 0.04+0.

is a set of 8-character names for the problem, the linear objective, the rhs, the
ranges and bounds. (This is a hangover from MPS files. The names are used
in the printed solution and in some of the basis files.)

is the constraint matrix (Jacobian), stored column-wise.
is a list of row indices for each nonzero in a(*).

is a set of pointers to the beginning of each column of the constraint matrix
within a(*) and ha(x). It is essential that ka(l) = 1 and ka(n + 1) = ne+1.

1. If the problem has a nonlinear objective, the first nnobj columns of a and
ha belong to the nonlinear objective variables. Subroutine funobj deals
with these variables.

2. If the problem has nonlinear constraints, the first nnjac columns of a and
ha belong to the nonlinear Jacobian variables, and the first nncon rows
of a and ha belong to the nonlinear constraints. Subroutine funcon deals
with these variables and constraints.

3. If nnobj > 0 and nnjac > 0, the two sets of nonlinear variables overlap.
The total number of nonlinear variables is nn = max(nnobj,nnjac).

4. The Jacobian forms the top left corner of a and ha. If a Jacobian column
j (1 < j < nnjac) contains any entries a(k), ha(k) associated with
nonlinear constraints (1 < ha{k) < nncon), those entries must come
before any other (linear) entries.

5. The row indices ha(k) for a column may be in any order (subject to
Jacobian entries appearing first}. Subroutine funcen must define Jacobian |
entries in the same order.

6. Columns of A should contain at least one entry, so that ka(j) < ka(j+ 1)
for every j. If a column has no meaningful entry, include a dummy entry
alk) = 0.04+0, halk) = 1.

is the lower bounds on the variables and slacks (z, s).

The first n entries of bl, bu, hs and xn refer to the variables z. The last m
entries refer to the slacks s.

is the upper bounds on (z, s).

Beware: MINOS represents general constraints as Az + 8 = 0 Constraints of
the form { € Az < u therefore mean { < —5 < 1, s0 that —u < s € —{. The
Jast 7n components of bl and bu are —u and —I.

130

Appendix B. Subroutine minoss

namei{nname}, name2{nname} are integer arrays.

hs(nb)

n{nb)

pi(m)

ns

If nname = 1, namel and name2 are not used. The printed solution will
use generic names for the columns and rows. If nname = nb, name1(;) and
name2(j) should contain the name of the j-th variable in 2a4 format (j = 1 to
nb). If j = n + i, the j-th variable is the i-th row.

sometimes contains a set of initial states for each variable z, or for each variable
and slack (z, s). See next lines.

sometimes contains a set of initial values for each variable z, or for each variable
and slack (z, s).

1. For cold starts, you must define he(j) and xn(j), j = 1 to n. (The values
for j = n+ 1 to nb need not be set.) If nothing special is known about the
problem, or if there is no wish to provide special information, you may set
hs(j) = 0, xn(j) = 0.0 for all ; = 1 to n. All variables will be eligible
for the initial basis.

Less trivially, to say that variable j will probably be equal to one of its
bounds, set hs(j) = 4 and xn(j) = bl(j) or ha(j) = 5 and xn(j) =
bu(j) as appropriate.

9. For Cold starts with no basis file, a Crash procedure is used to select an
initial basis. The initial basis matrix will be triangular (ignoring certain
small entries in each column). The values ks(j) =0, 1, 2, 3, 4, 5 have
the following meaning:

If hs(j) = 0, 1 or 3, Crash considers that column j is eligible for the
basis, with preference given to 3.

If he(j) = 2, 4 or 5, Crash ignores column ;.

After Crash, columns for which hs(j) = 2 are made superbasic. Other
columns not selected for the basis are made nonbasic at the value xn(j) if
b1(j) < xn(j) < bu(j), or at the value bl{;j) or bul(j) closest to xn{j).

‘3. For Warm or Hot starts, all of hs (1:nb) is assumed to be set to the values -

0, 1, 2 or 3 (probably from some previous call) and all of xn(1:nb) must
have values.

If start = ’Cold’ or Basis file” and an OLD BASIS, INSERT or LOAD file is
provided, hs and xn need not be set at all.

contains an estimate of the vector of Lagrange multipliers (shadow prices) for
the nonlinear constraints. The first nncon components must be defined. They
will be used as A in the subproblem objective function for the first major
iteration. If nothing is known about Ag, set pi(i) = 0.0d+0, ¢ =1 to nncon.

need not be specified for Cold starts, but should retain its value from a previous
call when a Warm or Hot start is used.

B.1 Subroutine minoss 131

z(nwcore) is a {large) array that provides all workspace. Problems involving m general

On exit:

hs(nb)

xn{nb)

pi(m)

rc(nb)

inform

constraints typically need nwcore at least 100m. See the output parameter
mincor below,

is the final state vector. If the solution is optimal or feasible, the entries of hs
usually have the following meaning:

hs(j) St:te of variable j Usual value of xn(s)

0 nonbasic bl(j)
L nonbasic bu{y)
2 superbasic Between b1(j) and bu(y)
3 basic Between b1(j) and bu(j)

Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance. Note that if scaling is specified, the Feasibility
tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds,
but this is unlikely unless the problem is very badly scaled. Check the “Primal
infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Feasibility tolerance, and there may be some nonbasics for
which xn(j) lies strictly between its bounds.

If ninf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sinf if scaling was not used).

is the final variables and slacks (z, s}.

is the vector of dual variables 7 (a set of Lagrange multipliers for the general
constraints).

is a vector of reduced costs, g—(A [Yr, where g is the gradient of the objective
function if xn is feasible, or the gradient of the Phase-1 ob jective otherwise. If
ninf = 0, the last m entries are —7.

says what happened, as described more fully in Chapter 6.3. The next page
summarizes the possible values.

132 Appendix B. Subroutine minoss
inform .eaning
0 Optimal solution found.
1 The problem is infeasibie.
2 The problem is unbaunded (or badly scaled).
3 Too many iterations.
4 Apparent stall. The solution has not changed for a
large number of iterations (e.g. 1000).
5 The Superbasics limit is too small,
6 Subroutine funobj or funcon requested termination
by returning mode < 0.
7 funobj seems to be giving incorrect gradients.
8 funcon seems to be giving incorrect gradients.
9 The current point cannot be improved.
10 Numerical error in trying to satisfy the linear constraints
(or the linearized nonlinear constraints). The basis is
very iil-conditioned.
11 Cannot find a superbasic to replace a basic variable.
12 Basis factorization requested twice in a row.
Should probably be treated as inform = 9.
13 Near-optimal solution found.
Should probably be treated as inform = 9.
inform Meaning
20 Not enough storage for the basis factorization.
21 Error in basis package.
22 The basis is singular after several attempts to
factorize it (and add slacks where necessary).
30 An OLD BASIS file had dimensions that did not match the
current problem.
32 System error. Wrong number of basic variables.
40 Fatal errors in the MPS file.
41 Not enough storage to read the MPS file.
42 Not enough storage to solve the problem.
mincor says how much storage is needed to solve the problem. If inform = 42, the
work array z{nwcore) was too small. minoss may be called again with nwcore
suitably larger than mincor. (The bigger the better, since it is not certain how
much storage the basis factors need.)
ns is the final number of superbasics.
ninf is the number of infeasibilities.
sinf is the sum of infeasibilities.
obj is the value of the objective function. If ninf = 0, obj includes the nonlinear

objective if any. If ninf > 0, obj is just the linear objective if any.

B.2 Subroutine mispec 133

B.2 SUBROUTINE MISPEC

This subroutine must be called before the first call to minoss. It opens the SPECS, PRINT
and SUMMARY files (if they exist), sets all options to default values. and reads the SPECS
file if any. File numbers must be in the range 1 to 99, or 0 if the associated file does not
exist.

Specification

subroutine mispec(ispecs, iprint, isumm, nwcore, inform)

integer igpecs, iprint, isumm, nwcore, inform

On entry:

ispecs says whether or not a SPECS file exists. If ispecs >0, 2 file is read from the
specified Fortran file number. Typically ispecs = 4.

iprint says if a PRINT file is to be created. Typically iprint = 9.

isumm says if a SUMMARY file is to be created. Typically isumm = 6. In an interactive
environment, this value usually denotes the screen.

nwcore is the length of the workspace array z(*) that is later passed to minoss.

On exit:

inform is © if there was no SPECS file, or if the SPECS file was successfully read.
Otherwise, it returns the number of errors encountered.

B.3 SUBROUTINES MIOPT, MIOPTI, MIOPTR

These subroutines may be called from the program that calls minoss. They specify a single
option that might otherwise be defined in one line of a SPECS file.

Specification

subroutine miopt (buffer, iprint, isumm, inform)
subroutine miopti(buffer, ivalue, iprint, isumm, inform)
subroutine mioptr(buffer, rvalue, iprint, isumm, inform)

character#(*) buffer
integer ivalue
double precision rvalue
integer iprint, isumm, inform

134 Appendix B. Subroutine minoss
On entry:
buffer is a string to be decoded as if it were a line of a SPECS file. For miopt, the
maximum length of buffer is 72 characters. Use miopt if the string contains
all of the data associated with a particular keyword. For example,
call miopt (’Iterations 1000’, iprint, isumm, inform)
is suitable if the value 1600 is known at compile time.
For miopti and mioptr the maximum length of buffer is 55 characters.
ivaluae is an integer value associated with the keyword in buffer. Use miopti if it is
convenient to define the value at run time. For example,
itnlim = 1000
if (m .gt. 500} itnlim = 8000
call miopti(’Iterations’, itnlim, iprint, isumm, inform)
allows the iteration limit to be computed.
rvalue is a floating-point value associated with the keyword in buffer. Use mioptr if
it is convenient to define the value at run time. For example,
factol = 100.0d+0
if (illcon) factol = 5.0d+0
call mioptr{ ’'LU factor tol’, factol, iprint, isumm, inform)
allows the LU stability tolerance to be computed.
iprint is a file number for printing each line of data, along with any error messages.
iprint = 0 suppresses this output.
isumm is a file number for printing any error messages. isumm = 0 suppresses this
output. '
inform should be 0.
On exit:
inform is the number of errors encountered so far.

B.4 Example Use of minoss 135

B.4 EXAMPLE USE OF MINOSS

File minost.for contains a Fortran test program to illustrate the use of subroutines mispec,
minoss, miopt, miopti and mioptr. The test program reads a SPECS file, generates test
problem MANNE (see Pages 98-108 of the User’s Guide), sets some options not specified
in the SPECS file, then calls minoss to solve the problem.

The SPECS file is in minost.spe. The required function subroutines funobj and funcon
are part of the MINOS source file mi0OSfuns. for.

To use the test program, compile and link minost.for and all of the MINOS source
files, excluding the stand-alone MINOS main program (miOOmain.for). See file unix.mak
or minost .mak.

To run the resulting binary file, see file unix.run or vminost.com.

Good luck with your own use of minoss!

File minost.for

B e e e e e e S M S S S m S Se S SETm T
* File minost.for
* This is a main program to test subroutine minoss, which is
* part of MINOS 5.5. It generates the problem called MANNE on
* Pages 98-108 of the MINOS 5.1 User’s Guide, then asks minoss
* to solve it.
*
*
» 11 Nov 1991: First version.
» 27 Nov 1991: miopt, miopti, mioptr used to alter some options
* for a second call to minoss.
* 10 Apr 1992: objadd added as input parameter to minoss.
* 26 Jun 1992: integers2 changed to integer*4.
* 15 Qct 1993: t4data now outputs pi.
* 24 Jan 1995: MINOS inadvertently scales all of xn before solving,
* so t4data sets dummy values for the slacks after all.
* 05 Feb 1998: No longer have to set Jacobian = dense or sparse
* when MINOS is called as a subroutine.
* — - -
program minost
implicit double precision {a-h,o-z)
parameter (maxm = 100,
$ maxn = 150,
$ maxnb = maxm + maxn,
$ maxne = 500,
$ nname = 1)
character*g names(5)
integer#*4 ha(maxne) , hs(maxnb)
integer ka(maxn+1), namei(nname), name2(nname)
double precision a(maxne) , bl(maxnb) , bu(maxnb),

136 Appendix B. Subroutine minoss
$ xn(maxnb) , pi{maxm) , re(maxnb)
parameter (nwcore = 50000)
double precision z(nwcore)
$ e e e s e M S oSS oSS oS SSSTESmTE T T
* Give names to the Proeblem, Objective, Rhs, Ranges and Bounds.
names{1) = 'mannell '’
names(2) = *tunobj '
names{3} = ’'zeroc !
names(4) = ‘rangel '
names{5) # ’boundl '
* Specify some of the MINQS files.
* ispecs is the Specs file (0 i none).
* iprint is the Print file (0 if none).
- ijsumm is the Summary file (0 if rnone).
* (mispec opens these files via mifile and miopen.)
* nout is an output file used here by mitest.
ispecs = 4
iprint = 9
isumm = 6
nout = 8
¢ memmmeemmmme——mmmmmmmmmemmmmemesssS—sosooso—soSosooSSoTEIoTETTTTT
* Set options to default values.
. Read a Specs file (if ispecs 2 0).
g | —emmm——e————esesmsoas —— o o A0 e e o
call mispec(ispecs, iprint, isumm, nucore, inform)
if (inform .ge. 2) then
write(nout, *) ’‘ispecs > 0 but no Specs file found’
stop
end it
X 2 ——————— i e e o o e R R R sl S T
» Generats a 10-pericd problem (nt = 10).
* Instead of hardwiring nt here, we could do the following:
* 1. Say Konlinear constraints 10 in the Specs file,
* 2. At the top of this program include the following common block:
* common /m8len / njac ,nncon ,ancon0,nnjac
* 3. Say nt = nacon in the line below.
& mmme—mmmem——— e —omm e o R, —
nt = 10

call t4data{ nt, maxm, maxn, maxnb, maxne, intorm,
m, n, nb, ne, nncon, nnobj, nnjac,
a, ha, ka, bl, bu, hs, xn, pi)

@

it {inform .ge. 1) then

B.4 Example Use of minoss 137

write{nout, *) 'Not enough storage to generate a problem ',
$ 'with nt =’, nt
stop
end if

Specify options that were not set in the Specs file.
i1 and i2 may refer to the Print and Summary file respectively.
Setting them to 0 suppresses printing.

% # ¥ * *

iz =0
ltime = 2
call miopti{ 'Timing level ', 1ltime, i1, i2, inform)

Go for it, using a Cold start.
iobj = 0 means there is no linear objective row in a(*).
objadd = 0.0 means there is no constant to be added to the
objective.)
hs need not be set if a basis file is to be input.
Otherwise, each hs(i:n) should be 0, 1, 2, 3, 4, or 5.
The values are used by the Crash procedure m2crsh
to choose an initial basis B.
If hs(j) = 0 or 1, column j is eligible for B.
If hs(j) = 2, column j is initially superbasic (mot in B).
If hs(j) = 3, column j is eligible for B and is given
preference over columns with hs(j) = 0 or 1.
If hs{j) = 4 or 5, column j is initially nonbasic.

PO R K B R I R N I

For straightforward applications we would call minoss just once,
giving it all of z(*) for workspacs.

Here we call it twice to illustrate situations where z(*) can be
expanded to suit the problem size.

For the first call, set lenz foolishly small and let minoss
tell us (via mincor) how big it would like z(*) to be.

& # % B # *

lenz = 2
call minoss('Cold’, m, n, nb, ne, NOARE,
nncon, nnobj, nnjac,
iobj, objadd, names,
a, ha, ka, bl, bu, namei, name?2,
hs, xn, pi, re,
inform, mincor, ns, nint, sint, obj,
z, lenz)

©“ @ O N B B

write({nout, *) ' °

138 Appendix B. Subroutine minoss
write(nout, *) ’Estimate of required workspace: mincor =’, mincor
* Since nwcor2 was not big enough, we will now have inform = 42.
* Make z(*) longer and try again. mincor SHOULD be enough.
* {In general we should allow more to give the LU factors
* as much room as possible). For example,
L mincor = minger + 5*m + 1000 might be enough.)
*
* Note that we can’t say z(*} is longer than nwcore here.
* minoss will return inform = 42 again if mincor > nwcore.
lenz = min(mincor, nwcore)
call minoss{ ’Cold’, m, n, nb, ne, nname,
$ nncon, nnobj, nnjac,
$ iobj, objadd, names,
$ a, ha, ka, bl, bu, namel, name?2,
$ hs, xn, pi, re,
$ inform, mincor, ns, ninf, sinf, obj,
$ z, lenz) :
write(nout, *) ' °
write(nout, *) 'minoss finished.’
write(nout, *) ’inform =', inform
write(nout, *) ’ninf =’, ninf
write(nout, *) ’sint =!, sinf
write{nout, *) 'obj =), obj
if (inform .ge. 20) go to 900
* e _— _— _— -_—
* Alter some options and test the Warm atart,
* ———————————————————— . —— T T —— - T —— S o o] . R o o el . g o i S
* The following illustrates the use of miopt, miopti and mioptr
* to set specific options. If necessary, we could ensure that
* all unspecified options take default values
* by first calling miopt { 'Defaults’, ...).
* Beware that certain parameters would then need to be redefined.
write(nout, =) ' *
write{nout, *) 'Alter options and test ¥arm start:’
inform = 0
itnlim = 20
penpar = 0.01
call miopt (°’ ', iprint, isumm, inform)}
#—~= c¢all miopt (‘Defaults ', iprint, isumm, inform)
*——— call miopti{ ’Problem number ', 1114, iprint, isumm, inform)
#-== call miopt (’'Maximizse ', iprint, isumm, inform)
call miopt (’'Derivative level 37, iprint, isumm, inform)
*-—= call miopt { 'Print 1level 0’, iprint, isumm, inform)
call miopt ('Verify level 0!, iprint, isumm, inform)

B.4 Example Use of minoss

#* % % # # R B #*

[TR IR TR JEE TEE JAY TEE NEE SN NEE DL BN N

call miopt (’'Scale option 07,
call miopti('Iterations

iprint, isumm, inform)
’, itnlim, iprint, isumm, inform)

call mioptr(‘Penalty parameter ', penpar, iprint, isumm, inform)

if (inform .gt. O) then

write(nout, *} 'NOTE: Some of the options were not recognized’

end if

Test the Warm start.
hs{*) specifies a complete basis from the previous call.

A Warm start uses hs(*) directly, without calling Crash.

Warm and Hot starts are normally used after minoss has solved a

“ 9 O H W B

problem with the SAME DIMENSIONS but perhaps altered data.
Here we have not altered the data, so very few iterations
should be required.

call minoss('Warm’, m, n, nb, ne, nname,
nncon, nnebj, nnjac,
iobj, objadd, names,
a, ha, ka, bl, bu, namel, name2,
hs, xn, pi, re¢,
inform, mincor, ns, ninf, sinf, obj,
Z, ndcore)

write{nout, *} * '

write(nout, *) ’minoss finished again.'
write{nout, *) ’inform =’, inferm
write(nout, *) ’obj =, obj

if (inform .ge. 20} go to 900

Alter more options (perhaps) and test the Hot start,

As with a Warm start, hs(*) specifies a basis from the

previous call. In addition, up to three items from the previous
call can be reused. They are denoted by F, H and 5 as follows:

'Hot F’ means use the existing basis FACTORS (B = LU).

'Hot H’ means use the existing reduced HESSIAN approximation.
'Hot S’ means use the existing column and row SCALES.

'Hot FS' means use the Factors and Scales but not the Heszsian.
‘Hot FHS!' means use all three itenms.

'Hot’ ia equivalent to 'Hot FHS’.

The letters F,H,S may be in any order.

Note that ’'Hot’ keeps existing scales. Must say

‘Hot B' or 'Hot ...’ or something longer than 4 characters
if new scales are wanted.

write{nout, %) ' °’

write{nout, *) 'Test Hot start:’

call miopt { ° ', iprint, isumm, inform)
call miopt ('Scale option 2, iprint, isumm, inform)

139

140 Appendix B. Subroutine minass

call minoss('Hot H', m, n, nb, he, nnams,
nncon, nnobj, nnjac,
iohj, objadd, names,
a, ha, ka, bl, bu, namel, name2,
hs, xn, pi, rc,
inform, mincor, ns, ninf, sinf, obj,
2z, nwW¢ore)

©“® o ¥ o 9 v

write{nout, =) * °’
write{nout, *) ’'minoss finished again.’
write{nout, *) ’inform =’, inform

write{nout, =) ’obj =, obj
if (inform .ge. 20) go to 900
stop

Error exit.

i e e . . i ——— et g e

900 write{nout, ») ' '’
writalnout, *) 'STOPPING because of error condition’
stop

* end of main program to test subroutine minoss
end

FPTTSTOTETTsTETTRTwewee e s R PERREELSLLL S 2 S LRSS s S A S8 S AR AR A

subroutine t4data(nt, maxm, maxn, maxnb, maxne, inform,
$ m, n, ©b, ne, nncon, nnobj, mnjac,
$ a, ha, kxa, bl, bu, hs, xn, pi)

implicit double precision (a-h,o-z)

integer+4 ha(maxne), hs(maxnb)

integer ka(maxn+1)

double pracision a(maxne) , bl{maxnb), bu(maxnb),

$: xn(maxnb), pi(maxm)
o mme—mmmmmmemms—cmem———— - —— ——— m———————m e ——————
* t4data generates data for the test problem t4manne
. (called problem MANNE in the MINOS 5.1 User’s Guide).
» The constraints take the form
* £(x) + A*x + 8 = 0,
* whers the Jacobian for f£(x) + Ax is stored in a(%), and any
* terms coming from f{(x) are in the TOP LEFT-HA¥D CORNER of a(s),
* with dimengions nncon x nhjac.
* Note that the right-hand side is zero.
* s is a set of slack variablea whoss bounds contain any constants
* that might have formed a right-hand side.
*
* The objective function is

B.4 Example Use of minoss

141

On entry,

I*i**'l**il**iﬁ*lliii}**l‘*ll**l‘l

parameter
$
$

* nt define

m -
n
ab =
nncon
nnobj =
nnjac
ne =

u

* Check it

inform =
it (m

F(x) + ¢'x
where ¢ would be row iobj of A (but there is no such row in
this example). F(x) involves only the FIRST nnobj variables.

nt is T, the number of time periods.
maxm, maxn, maxnb, maxne are upper limits on m, n, nb, ne.

On exit,

inform is O if there is enough storage, 1 otherwise.

m is the number of nonlinear and linear comstraints.
n igs the number of variables.

nb is n + m.

ne is the number of nonzeros in a{*}.

nncon is the number of nonlinear constraints (they come first).
nnobj is the number of nonlinear objactive variables.
nnjac is the number of nonlinear Jacobian variables.

a is the constraint matrix (Jacobian}, stored column-vise.
ha is the list of row indices for each nonzero in a(e).

ka is a set of pointers to the beginning of each column of a.
bl is the lower bounds on x and s,

bu is the upper bounds on x and 3.

hs(1:n) is a set of initial states for each x (0,1,2,3,4,5).
xn{i:n) is a set of initial values for x.
pi(1:m) is a set of inmitial values for the dual variables pi.

09 Jul 1992: No need to initialize xn and hs for the slacks,
15 Det 1993: pi is now an output parameter. {Should have been

all along.)

24 Jan-1995: MINOS inadvertently scales all of xn before solving,

so we set dummy values for the slacks after all.

= nt

(zero = 0.0d4+0, one = 1.0d4+0,
dummy = 0.1d+0, growth = .03d+0,
bplus = 1.0d+20, bminus = - bplus)

s the dimension of the problem.
nt*2

nt#*3

nt+tn

nt*2

nt

nt*6 -~ 1

there is enough storags.

0
.gt. maxm) inform = 1

142 Appendix B. Subroutine minoss
it (n .gt. maxn) inform = 1
it (nb .gt. maxnb) inform = 1
if (ne .gt. maxne) inform = 1
it (inform .gt. 0O) return
* Generate columns for Capital (Kt, t = 1 to nt).
* The first nt rows are nonlinear, and the next nt are linear.
* The Jacobian is an nt x nt diagonal.
* We generate the sparsity pattern here.
* We put in dummy numerical values of 0.1 for the gradiemts.
* Real values for the gradients are computed by tdcon.
ne =0
do 100 k =1, nt
* There is one Jacobian nonzZerc per column.
ne = ne + 1
xa(k) = ne
ha(ne) = k
a(ne) = dummy
* The linear constraints form an upper bidiagonal pattern.

if (k .gt. 1) then

ne = ne + 1
ha(ne) = nt + Xk -~ 1
a{ne) = one

end if

ne = nea + 1

ha{ne) = nt + k

a(ne) = - one

100 continue

The last nonzero is special.
a(ne) = growth
Generate columns for Consumption (Ct for t = 1 to nt).

They form -I in the first nt rows.
jC and jI are base indices for the Ct and It variables.

jc = nt

il = nt*2

do 200k = 1, nt
ne = ne + 1
ka(jC+k) = ne
ha(ne) =k
a{ne) = - one

B.

4 Example Use of minoss

143

®# % % B ®

200 continue

Generate columns for Investment (It for t = 1 to nt).
They form -I in the first nt rows and -I in the last nt rows.

do 300 k = 1, nt
ne =ne + 1
ka(jI+k) = ne
ha(ne) =k
a(ne) = - one
ne = na 4+ 1
a(ne)} = ~ one
ha{ne) =1t + k

300 continue
ka(*) has one extra element.
xa{n+1) = ne + 1

Set lower and upper bounds for Kt, Ct, It.

Also initial values and initial states for all variables.

The Jacobian variables are the most important.

Set hs(k) = 2 to make them initially superbasic.

The others might as well be on their smallest bounds (hs(j) = 0).

do 400 k =1, nt
b1(k) = 3.08d+0
bu{ k) = bplus
bl(jC+k) = 0.95d+0
bu(jC+k) = bplus
bl(jI+k) = 0.05d+0

bu{jI+k) = bplus

xn(k) = 3.0d+0 + (k ~ 1)/10.0d+0
xn(jC+k) = bl(jC+k)

xn(jivk) = BA{jIen)

hs{ k) =2

hs(jC+k) = O

hs(jI+k) = 0

400 continue

The first Capital is fixed.

The last three Investments are bounded.
bu(1) = b1(1)

(1) = bl{1)

ha(1) =0

bu(jI+nt-2) = 0.112d+0

bu(jI+nt-1) = 0.114d+0

bu(jI+nt) = 0.116d+0

144 Appendix B. Subroutine minoss
* Set bounds on the slacks.
- The nt nonlinear (Money) Tows are >=,
* The nt linear (CapacitY) rows are <=,
* We no longer need to set initial values and states for slacks.
* 24 Jan 1995: MINOS inadvertently scales all of xn before solving,
* so we set dummy values for the slacks after all,
N =n
iy =n +nt

do 500 k=1, nt
bl(jM+k) = bminus
bu(jM+k) = zero
bl(jY+k) = zero
bu(jY+k) = bplus

xn{jM+k) = zero
xn{j¥+k) = zero
n- ha(jM+k} = 0
*— Re(jY+k) = 0
500 continue

* The last Money and Capacity rows have a Range.
bl(jM+nt) = - 10.0d+0
bu(jY+nt) = 20.0d4+0
* Initialize pi.
* 5.4 requires only pi(l:nncon) to be initialized.
* 5.5 may want all of pi to be initialized (not yet sure).
do 600 1 =1, nt
pidi) = - one
pi(nt+i) = + one
600 continue
* end of t4data

end

B.5 MINOS(IIS): Debugging Infeasible Models

145

Begin mannelld

File minost.spc

Problem number
Maximize

Major iterations
Minor iterations
Penalty parameter

Hessian dimension

Derivative lavel
Verify gradients
Verify level

Scale option
Scale option
Iterations

Print level (jflxb)

Print frequency
Summary level
Summary frequency

End Manpnel0

(10-period economic growth model)

1114

B
20
0.1

10
3

Q
2

1
50

00000

1

o

1

B.5 MINOS(IIS): DEBUGGING INFEASIBLE MODELS

If the linear constraints in a model cannot be satisfied, MINOS will exit with the message
“The problem is infeasible”. This usually implies some formulation error in the model. The
printed solution shows which variables or slacks lie outside their bounds, and by how much.
However, the exact cause of infeasibility may be difficult to detect.

In such cases, further analysis is provided by MINOS(ilS}, a modified version of MINOS

J. W. Chinneck (1993). MINOS(IIS) 4.2 User’s Manual, Report SCE-93-17, Department
of Systems and Computer Engineering, Carleton University, Ottawa, Canada K15 5B6.

Phone: (613)788-5733, Fax: (613)788-5727, Email: chinneck@sce.carleton.ca.

available from John Chinneck at Carleton University:

