Monte Carlo Simulation Model Execution/Control using Unix/Linux

Monte Carlo simulation allows investigating changes in decisions in an engineering design
problem resulting from treating a parameter or input in a simulation model as a random
variable. If the simulation model can be “packaged” as a subroutine that can be called from a
main control program, the required logic and programming is relatively simple. Unfortunately,
many times the simulation program is either not available in source code form, or is simply
not easily converted to a subroutine form. In this situation, implementing a Monte Carlo
simulation exercise is significantly more complicated since the control logic must be shifted
to a series of programs and operating system script files.

In the example below, the assumption is that the simulation model is a freestanding pro-
gram, and can not be converted to a subroutine. It is also assumed that a single input variable
will be changed in each iteration, or pass of the simulation model. Specifically, suppose that
the variable to be treated as a random variable is the concentration of a contaminant entering
at a node in the groundwater model SUTRA. Assume it is desired to execute the simulation
model ntimes, each time with a different value of the contaminant concentration.

Before the actual simulation exercise is started, a file is created by the user that contains all
of the simulation parameter values to be used in the entire Monte Carlo exercise. In this case,
the file would have at least ntimes lines, with one number (the contaminate concentration) on
eachline. The numbers in the file would usually be created by a Fortran program that produced
random contaminant concentration values based on some specified probability distribution.
This file will be denoted here as the random_value_fiTe.

It is also necessary to create a base, or template input data file for the simulation model.
This file should be a complete input file, and the simulation model should be tested against
this file before continuing. The value of the random variable used in this file is not important,
but areasonable choice would be the nominal or average value of the random variable. The line
of the input file on which the random variable value appears will be denoted targetline and
the Fortran format that the simulation model uses to read this line is denoted targetformat.

One file used in the process is created automatically by the Unix shell program discussed
below. This file, denoted the iteration file contains a single number, the current iteration
value. For example, on the first iteration, the iteration file will contain the number 1. On
iteration 30, the iteration file will contain the number 30.

In the approach given here, two additional Fortran programs need to be written. The first
program, denoted makeinput, prepares a new input file for the simulation model for each iter-
ation. The program uses the template data file as the basis for the new data file, just changing
the targetTine. The basic logic of this program is to read all of the lines up to the target-
Tine and write them out to the new simulation model data file. The targetl1ine containing
(among other things) the base value of the random parameter is read using targetformat,
but it is not yet written out to the new data file.

The iteration file is then read, giving the iteration number. The makeinput program
then reads the new value of the random variable from the line of the random_value_file
corresponding to the iteration number. The targetTine is now written out to the new data
file using targetformat, with the new random value of the parameter used instead of the
existing base or nominal value. Finally, the remaining lines of the template data file are copied
to the new data file and the makeinput program ends.

The other program that needs to be written is used to process the output from the simula-
tion model. Typically, only a few lines of the simulation model output are to be “saved” from
one iteration to the next. Those lines must be read in and appended to the other lines saved
from previous iterations. After all iterations of the simulation model have been completed,

1

the file containing the important results from each iteration can be processed to determine
the effect of the random variable on model output and on the decisions made in the design
problem.

The entire Monte Carlo simulation exercise is controlled by a Unix shell script (command
file). The script is contained in a file that is created using a text editor such as kate or vi. The
shell script contains a loop that executes all of the required programs discussed above the
desired number of times in the following order:

1.

The makeinput (Fortran) program that prepares an input file that will be used by
the simulation model each iteration. Usually, the input file only differs in a single
place from one iteration to the next (i.e., we select a new input data value from some
random distribution).

The simulation model itself.

A program that processes the output from the simulation model. Usually only a few
numbers are needed from the simulation output for each iteration. These values
are read in and appended into some other file (the savefile). Note that the shell
script assumes that this program creates a new file containing all of the saved results
from previous iterations and with the important results from the current iteration
appended to the end. The shell script will delete the old savefile and rename the
new one prior to starting a new iteration.

A sample of a shell script file is given below. After creating the file, be sure to change
the permissions to include execute permission using the command chmod +x file_name. To
“execute”the script, just type the name of the file at the command line.

#!/bin/bash

#Fill in the required numbers and file names below

ntimes=20 #number of times through the loop

iteration="iteration.dat"

makeinput="control" #name of fortran executable that creates new input file
model="sutra" #simulation model executable name

processoutput="sutraout" #executable program that processes model output
savefile="abc.monte"

savetemp="abc.tmp"

echo "This script will loop $ntimes times"

echo "Each iteration, the input data file will be created by program $makeinput"
echo "Then the model $model will be executed"

echo "Finally the program $processoutput will be run to process model output data"

echo

i=1 #initalize loop index
while [$i -le $ntimes] #do while i <= ntimes

do

echo $i > $iteration # write the iteration number out to a file

"$makeinput" #execute the fortran program that create the data new file

"$model" #execute the simulation model

"$processoutput" #run ouput processor program

rm "$savefile" #delete the old Monte Carlo summary file

mv "$savetemp" "$savefile" #rename the new summary file created by processoutput
i=$(($i+1)) #increment the loop index

done

echo "All done!"

A sample Fortran program that satisfies the requirements of the makeinput program is
given below. The program is set up to use the template data file abc-template.dat to create
the new data file named abc.dat by changing line 694 (the value of targetline). For the

2

curious, the file abc-tempTlate.dat is just a copy of the SUTRA data file rocky.d5, and the
value being changed is the concentration of the contaminant at the source point.

program control
implicit none
integer,parameter: :targetline=694
integer::eof ,i,iteration,node
double precision::x1,x2
character (len=30),parameter::fnin="abc-template.dat",fnout="abc.dat", &
fnvalues="randomvalues.dat", &
fniteration="iteration.dat"
character (len=3), parameter::fmt="(a)"
character (1en=30),parameter::targetformat="(i10,2e15.5)"
character (len=80)::line
open(11l,file=fnin, status="old") ! open the source template data file
open(21,file=fnout) ! open the new data file
! Copy the lines up to the target line to the new data file
do i=1,targetline-1
read(11,fmt)line
write(21,fmt)line
end do
! Read in the target line, modify the value of x2, and write it out
read(11,targetformat)node,x1,x2
! The iteration file is a single line file with a single number.
! The file is created by the Unix shell file running the show.
open(12,file=fniteration)
read(12,*)iteration
close(12)
! The random values file is created before this entire process starts.
! It contains the values of the random variable to be used for each
! iteration of the simulation model.
open(12,file=fnvalues)
! Advance to the correct entry
do i=1,iteration-1
read(12,fmt)line
end do
read(12,*)x2
close(12)
write(21,targetformat)node,x1,x2
! Copy the rest of the lines from the template file to the new data file
do
read(11,fmt,iostat=eof)line
if (eof/=0)exit
write(21,fmt)line
end do
close (11)
close (21)
!The following write statement is just to keep track of what is happening
write(*,*)"Interation ",iteration, "Leaving control with x2 = ",x2
stop
end program control

Finally, a sample Fortran program that illustrates how an output process program that
saves important results from each iteration might work.

program sutraout
implicit none
integer, parameter::nsets=3
integer::eof,i, j,where

integer, dimension(nsets)::endline,startline

character (len=3), parameter::fmt="(a)"

character (1len=30) ,parameter::fnin="abc.d6",fnout="abc.monte", fntemp="abc.tmp
character (len=140)::line

Insets is the number of sets (or groups) of lines that we want to append
'to the end of fnout. Each set of lines has a specified starting and
lending line number. In some cases, a more sophisticated search scheme
!is required to find the desired lines.

'fnin is the file containing the full simulation model output
'fnout is the file containing just those lines of output needed for each iteration
'fntemp is a copy of fnout, with the new lines from fnin appended to the end.

!The following are the assigned start and end lines for each set
startline(1)=40

endline(1)=40

startline(2)=100

endline(2)=104

startline(3)=504

endline(3)=505

!The basic strategy is to copy the existing lines of the fnout to fntemp.
!Then the desired lines of fnin are read and added to the end of fntemp.
!The Unix shell program will delete fnout and rename fntemp to fnout after
Ithis program is finished.

open(11l,file=fnin,status="01ld")
open(12,file=fnout)
open(21,file=fntemp)

!Copy the existing lines of saved output
do

read(12,fmt,iostat=eof)line

if (eof/=0)exit

write(21,fmt)line
end do

IRead in the new sets of simulation model output that we need to save
do i=1,nsets
if (i==1)then
where=1
else
where=endline(i-1)+1
end if
do j=where,startline(i)-1
read(11,fmt)1line
end do
do j=startline(i),endline(i)
read(11,fmt)line
write(21,fmt)line
end do
end do

close(11)
close(12)
close(21)
stop

end program sutraout

